
HPC Pipelines for Reproducibility and Profit
Alastair Droop, 2024-06-12

(Bio)science is suffering from a major reproducibility crisis

Published results frequently can not be reproduced

A major aspect of this is a lack of reproducibility in scientific software

Many aspects to this problem
• (Modern) scientific code is complicated & complex

• Not enough time or resources to “do software engineering properly”

• Not enough training

• Inappropriate tools

Reproducibility & Scientific Software

Baker, M. “1,500 scientists lift the lid on reproducibility”. Nature 533, 452–454 (2016). https://doi.org/10.1038/533452a

https://doi.org/10.1038/533452a

Findable
• Users can find (specific versions of) the software using a unique and persistent identifier

Accessible
• Software can be accessed and installed using standard tools

Interoperable
• Software adheres to domain-relevant data standards

Reusable
• Software can be run by other users for their specific needs

The FAIR Principles in Scientific Computing

Individual labs identify & install published code to run analyses

Little understanding of best practice or code reproducibility

Multiple installations of each tool with different versions
• And no record of version numbers

Usually, data can not be re-generated

Current Practice in Research Code
Lab Data

Identify required processing

Identify appropriate tools

Download & Install tools

Run tools

Interpret results

Publish results

A fundamental problem of interpreted languages is runtime dependency management

Code needs to locate (at runtime) dependency code and run it

Updating some code that a program depends on can change its behaviour

Many ways to address this problem

Dependencies

Containerisation

Dynamically linked code

Statically linked code

Virtual environments

Managed Environments

Containers

hard

easy

Python scripts, standard code

conda, mamba, virtualenv

modules, homebrew

Rust, etc

Docker, singularity

Python is interpreted
• The runtime is slow, and needs to perform garbage collection periodically

• The runtime makes writing multi-threaded code hard

• The poor runtime can’t see all the code at once, so can’t perform (full) static analysis

Python is dynamically typed
• Static analysis is very hard / impossible

• Debugging is harder

Python is written in C
• Hard to find deep errors

Python’s dependency stack is not well defined

What’s Wrong with Python?

setuptools, pip, venv, wheel, twine, pip-tools, virtualenvwrapper,
pipx, conda, pipenv, poetry, flit, hatch, pdm

Most of these are to a greater or lesser degree incompatible
• Which one do you pick?

• What happens if you need to install a pipeline with tools that are packaged in an incompatible way?

How Should you Install a Python Package?

We often need virtual environments to make R and Python software work

These are directories of packages that are loaded on demand

Virtual Environments are:

– Specific to a Python version
– Trivially updatable (and this is really bad)
– Fragile
– Often bloated
– Surprisingly difficult to accurately reproduce
– Difficult for users to set up

Virtual Environments are Difficult

https://xkcd.com/1987

https://xkcd.com/1987

Interpreted languages are executed by an interpreter at runtime,
which finds and links dependencies on the fly

+ Code can be almost instantly run (no compilation step)
+ Code can be trivially modified
+ Base script is small
+ Scripts can be platform-agnostic

– Dependencies are not included in the code
– Installation can be very complex
– Interpreter needs to be running, so often slower

Interpreted Languages

script

dependency A.1

dependency B.1

dependency C.1

dependency D.1

dependency D.2

interpreter

Statically-compiled code is executed by the system at runtime,
and contains all of its dependencies compiled into a single binary

+ Code does not rely on external packages that can get lost
+ Compiler can run comprehensive checks on the code
+ Installation can be extremely easy
+ No runtime interpreter required
+ Small runtime overhead

– Compilation can be slow
– Executables can be quite large
– Compiled binaries are platform-specific

Statically Compiled Languages

script

dependency A.1

dependency B.1

dependency C.1

dependency D.1

dependency D.2

compiler

binary

dependency A.1

dependency B.1

dependency C.1

dependency D.1

dependency D.2

script code

If we compile our code, the compiler gets a chance to see all the code at once

This allows the compiler to perform rigorous error checking

Rust takes this much further than most languages

+ Many whole classes of bug are no longer possible
+ The need for garbage collection is removed
+ Strict data ownership can be observed, allowing for highly parallel code

Benefits of (Static) Compilation

The purest form of method of containerising software is to bundle the tool and OS into a single box

Tools such as Docker & Apptainer do this

+ All dependencies are built into a single image
+ Installation is trivial
+ The exact software built into a container is documented
+ Containers can be hosted publicly (for example on quay.io)
+ Runtime use is standardised

– … none of the above points are really that simple
– Containers can be huge
– Easy stuff is trivial, but hard stuff gets really hard

Containerisation

http://quay.io

We build & ship containers using Docker, but run on HPC using Apptainer

“Best of both Worlds”

Containerisation

Requires root privileges Does not require root privileges

Easy to run on Linux, Mac, Windows, laptops, HPC Relatively complex to run off HPC

Well established & standard runtime & formats Still relatively niche

Excellent online container repositories

If necessary, build & test image locally (on laptop) by writing a Dockerfile

Once complete & tested, push Dockerfile to dockerhub

Pull container from dockerhub via apptainer onto Viking

Containerisation

Containerisation
FROM debian
LABEL image.author.name "Alastair Droop"
LABEL image.author.email "alastair.droop@york.ac.uk"

USER root
RUN apt-get -y update &&
 apt-get -y install --fix-missing &&
 apt-get install -y rng-tools-debian ent git wget gcc g++ make libbz2-dev libdivsufsort-dev libjsoncpp-dev libssl-dev libmpfr-dev

WORKDIR /root
RUN mkdir github
WORKDIR /root/github
RUN git clone https://github.com/blep/TestU01.git
WORKDIR /root/github/TestU01
RUN rm config.guess config.sub &&
 wget http://savannah.gnu.org/cgi-bin/viewcvs/*checkout*/config/config/config.guess &&
 wget http://savannah.gnu.org/cgi-bin/viewcvs/*checkout*/config/config/config.sub &&
 chmod a+x config.guess config.sub &&
 ./configure &&
 make &&
 make install
ENV PATH="/root/github/NIST-Statistical-Test-Suite/sts:$PATH"

RUN mkdir /root/github/alpharabbit
WORKDIR /root/github/alpharabbit
ADD alpharabbit.c alpharabbit.c
ENV LD_LIBRARY_PATH=/usr/local/lib:${LD_LIBRARY_PATH}
ENV LIBRARY_PATH=/usr/local/lib:${LIBRARY_PATH}
ENV C_INCLUDE_PATH=/usr/local/include:${C_INCLUDE_PATH}
RUN gcc alpharabbit.c -o alpharabbit -ltestu01 -lprobdist -lmylib -lm
ENV PATH="/root/github/alpharabbit:$PATH"

ENV DATA="/mnt/data"

ENV HOME=/root

http://savannah.gnu.org/cgi-bin/viewcvs/*checkout*/config/config/config.guess
http://savannah.gnu.org/cgi-bin/viewcvs/*checkout*/config/config/config.sub

Even if each script is perfectly containerised, we still need to record the steps performed

Pipelines simplify this
• Pipelines are conceptual workflows that manage & record the flow of data through a defined set of steps

• Provide the logic defining processes to be performed, as well as a record of what was done

A good pipeline system provides
• an exact log of what was done to your data; and

• A simple way to re-run the same steps

To be most effective, we need to ensure we can standardise as much as possible

Pipelines

CWL, Snakemake, Galaxy, Nextflow, WDL, GNU make, bpipe, Cgpipe,
Tfpipe, BigDataScript, Anduril, Ruffus, Loom

We actively use Snakemake & Nextflow
• Snakemake allows us to easily link multiple scripts together for once-off (or infrequent) use

• Nextflow allows us to run complex pipelines at high scale

Multiple Attempts to build Pipelines

Data Standard QC & Preprocessing Bespoke AnalysisData

Reports

Data

Reports

Boring but important Science!

We use Nexflow for our HPC pipeline work

+ Vast community effort
+ Industry buy-in
+ Many executors supported (including Slurm)
+ Supports containers
+ Extremely flexible

– Steep learning curve
– Groovy? Really?
– Easy stuff is trivial, but hard stuff gets really hard

Nextflow

The nf-core project hosts a large and growing set of nextflow bioinformatics pipelines

+ Vast community effort
+ Standardised format & underlying logic
+ Pipeline definition schemata
+ Extensive support & documentation
+ Many common biology processing tasks covered
+ Submission is very simple on HPC

– Steep learning curve (again)

NF Core

Nf-core Pipelines

The nf-core/rnaseq Pipeline

nf-core pipelines can be run “directly” on the HPC as sets of Slurm jobs

It is much easier to use a standardised portal to manage these We use Seqera Platform

+ Trivial submission
+ At-a-glance tracking
+ Simple run metrics
+ Simple logs & reports
+ Easy to migrate to other HPC platforms as well as Viking

– Paid service

Seqera Labs

Input Samples are provides as a CSV file:

Run parameters provided as either JSON or via the GUI

RNASeq Example

sample fastq_1 fastq_2 strandedness

Control.1 /mnt/scratch/projects/biol-tf-2018/data/SRR1272186_1.fastq.gz /mnt/scratch/projects/biol-tf-2018/data/SRR1272186_2.fastq.gz auto

Control.2 /mnt/scratch/projects/biol-tf-2018/data/SRR1272187_1.fastq.gz /mnt/scratch/projects/biol-tf-2018/data/SRR1272187_2.fastq.gz auto

Control.3 /mnt/scratch/projects/biol-tf-2018/data/SRR1272188_1.fastq.gz /mnt/scratch/projects/biol-tf-2018/data/SRR1272188_2.fastq.gz auto

Ischemic.1 /mnt/scratch/projects/biol-tf-2018/data/SRR1272189_1.fastq.gz /mnt/scratch/projects/biol-tf-2018/data/SRR1272189_2.fastq.gz auto

Idiopathic.2 /mnt/scratch/projects/biol-tf-2018/data/SRR1272190_1.fastq.gz /mnt/scratch/projects/biol-tf-2018/data/SRR1272190_2.fastq.gz auto

Idiopathic.3 /mnt/scratch/projects/biol-tf-2018/data/SRR1272191_1.fastq.gz /mnt/scratch/projects/biol-tf-2018/data/SRR1272191_2.fastq.gz auto

(demo)

Seqera Demo

https://cloud.seqera.io/orgs/TF_Data_Science_Hub/workspaces/TF_Pipelines/launchpad

The TF Data Science Group

• Bioinformatics

• Machine learning & AI

• Mathematical / statistical techniques

• Modelling, simulation & visualisation

• Data reproducibility, security, anonymity

• Scientific software development

We’re Part of the York University Bioscience Technology Facility

Teaching is increasingly important

• Specific techniques & skills

• Drop-in & “clinic” style advice

• Research computing skills

• Data handling

• Programming

