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Python for Scientific Computing

Python is one of the most popular programming languages for use in scientific
computing, and for good reasons:

Easy to learn the basics, and extremely powerful for veteran users.
Designed with readability in mind.
Very well-developed and interconnected scientific ecosystem (NumPy, SciPy,
Matplotlib, etc.)
Dynamic type system allows you to write expressive and generic code relatively
easily.

It almost seems too good to be true. . .
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The Problem with Python

Python is SLOW. . . and there are multiple reasons for this1:

Python is an interpreted language.
Python’s dynamic typing has a significant performance overhead.
Python can’t use multithreading due to the Global Interpreter Lock.

1There are other performance issues, such as the use of a garbage-collection system, but we won’t
cover these here.
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Why Python is so slow: interpreted language

Languages like C and Fortran are compiled to machine code, which can be directly
understood by your hardware.
Python is instead interpreted, meaning it is run one command at a time by the
CPython runtime (or some other interpreter)2.

2Technically speaking, it’s compiled to bytecode, which is itself interpreted.
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Why Python is so slow: interpreted language

Use the dis built-in module to ‘disassemble’ Python into a human-readable
representation of bytecode:

>>> from dis import dis
>>> def myfunc(x):
... return x + 1
>>> dis(myfunc)

2 0 LOAD_FAST 0 (x)
2 LOAD_CONST 1 (1)
4 BINARY_ADD
6 RETURN_VALUE

There are separate runtime function calls to place x on the stack, place 1 on the stack,
run the BINARY_ADD function, and to return the result!
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Why Python is so slow: dynamic typing

In a language like C++, almost everything about an object must
be known at compile time: type, size, member data, functions,
etc. The compiler can use this info to optimise the resulting
machine code.
Python instead allows us to use ‘duck typing’:

“If it looks like a duck and quacks like a duck, then it must be a
duck”

The downside is that the interpreter can’t make any assumptions
about objects, and every operation requires repetitive runtime
checks.
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Why Python is so slow: the GIL

The ‘Global Interpreter Lock’ (GIL) is a feature of Python that ensures thread safety.
However, it does so by effectively limiting Python code to single-threaded mode only.

Python uses reference counting to determine when objects should be removed from
memory.
Problem: if you could have multiple threads interpreting Python code at once, there
could be race conditions where two threads try to modify a reference count at once.
Putting a mutex/lock on every reference count would impose a significant
performance penalty to single-threaded code (and could lead to deadlocks).
The easy solution: place a lock on the Python interpreter itself, so only one thread
can interpret Python at a time.
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Why Python is so slow: the solutions

So how can we optimise our way around these problems?

Minimise the number of instructions to achieve a given task.
Delegate the performance-critical parts of our code to a compiled library
(e.g. NumPy)
Write our own compiled code using C/C++/Fortran/Rust/etc and create Python
bindings. There’s also Cython, which is purpose designed for the task.
Use a ‘Just-in-Time’ (JIT) compiler to compile our code at runtime.
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Is it worth optimising?

Figure: xkcd 1205, (CC BY-NC 2.5)

Speeding up Python|March 27th 2024|9/37



Is it worth optimising?

Things to consider:

Would the time saved in the long run make up for the time spent optimising?
Would optimising the code reduce its readability/maintainability?
Is there an external library we could leverage instead of optimising by hand?
Is the problem actually one of algorithmic complexity?

Always write tests before optimising! There’s no point in getting the wrong answer
quickly.
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Profiling

Premature optimisation is the root of all evil! It’s import to know where the major
bottlenecks exists so we can focus our attention where it really matters.

Python has a built-in tool cProfile that can tell us how much time we spend in
each function:

$ python -m cProfile -s cumulative my_script.py

[-s cumulative] instructs cProfile to sort the output results with the most
expensive operations first.
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Profiling

Let’s profile this simple script that makes two lists of random numbers and adds them
together:

from random import random

def make_list() -> list[float]:
return [random() for _ in range(10000000)]

def add_lists(a: list[float], b: list[float]) -> list[float]:
return [x + y for x, y in zip(a, b)]

a = make_list()
b = make_list()
c = add_lists(a, b)
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Profiling
The output of cProfile can be a little hard to read:
python -m cProfile -s cumulative my_script.py

20000833 function calls (20000806 primitive calls) in 2.640 seconds

Ordered by: cumulative time

ncalls tottime percall cumtime percall filename:lineno(function)
3/1 0.000 0.000 2.640 2.640 {built-in method builtins.exec}

1 0.000 0.000 2.640 2.640 my_script.py:1(<module>)
2 0.000 0.000 2.245 1.123 my_script.py:3(make_list)
2 1.476 0.738 2.245 1.123 my_script.py:4(<listcomp>)

20000000 0.770 0.000 0.770 0.000 {method 'random' of '_random.Random' objects}
1 0.000 0.000 0.394 0.394 my_script.py:6(add_lists)
1 0.394 0.394 0.394 0.394 my_script.py:7(<listcomp>)

6/1 0.000 0.000 0.001 0.001 <frozen importlib._bootstrap>:1022(_find_and_load)
...

After staring at it for a while, you’ll see that generating the random lists takes about six
times as long as adding them!
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Other profiling tools
pProfile is a popular alternative:

$ python -m pprofile my_script.py
Command line: my_script.py
Total duration: 42.0315s
File: my_script.py
File duration: 42.0314s (100.00%)
Line #| Hits| Time| Time per hit| %|Source code
------+----------+-------------+-------------+-------+-----------

3| 3| 8.82149e-06| 2.9405e-06| 0.00%|def make_list():
4| 20000006| 27.7651| 1.38825e-06| 66.06%| return [random() for _ in range(10000000)]

(call)| 2| 27.765| 13.8825| 66.06%|# my_script.py:4 <listcomp>
5| 0| 0| 0| 0.00%|
6| 2| 9.77516e-06| 4.88758e-06| 0.00%|def add_lists(a, b):
7| 10000003| 14.2663| 1.42663e-06| 33.94%| return [x + y for x, y in zip(a, b)]

(call)| 1| 14.2662| 14.2662| 33.94%|# my_script.py:7 <listcomp>
8| 0| 0| 0| 0.00%|
9| 1| 1.64509e-05| 1.64509e-05| 0.00%|a = make_list()

(call)| 1| 13.7482| 13.7482| 32.71%|# my_script.py:3 make_list
10| 1| 2.21729e-05| 2.21729e-05| 0.00%|b = make_list()

(call)| 1| 14.0168| 14.0168| 33.35%|# my_script.py:3 make_list
11| 1| 2.67029e-05| 2.67029e-05| 0.00%|c = add_lists(a, b)

(call)| 1| 14.2663| 14.2663| 33.94%|# my_script.py:6 add_lists
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Timing our code

Python has built-in tools for timing our code in the timeit module.
>>> def add_lists(a: list[float], b: list[float]) -> list[float]:

return [x + y for x, y in zip(a, b)]

>>> from timeit import timeit
>>> from random import random

>>> a = [random() for _ in range(100000)]
>>> b = [random() for _ in range(100000)]
>>> timeit(lambda: add_lists(a, b), number=100) / 100
0.003945145839825272

It gives the total time over number repetitions. The higher this is, the more reliable
your results will be.
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Pure Python

A lot of common Python patterns can be rephrased to cut down on the number of
instructions we run.
However, there’s only so much we can do to improve the speed of Python without
invoking external libraries.
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Pure Python: reducing instructions

We’ll use a simple problem for our example: finding the second derivative of a function
using finite differences:

∂2fi

∂x2 ≈
fi−1 − 2fi + fi+1

∆x2 (1)

A common approach to solving this sort of problem is to create a new list and append to
it:

second_deriv = []
for i in range(1, len(f)-1):

second_deriv.append((f[i-1] - 2*f[i] + f[i+1]) / dx**2)
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Pure Python: reducing instructions

second_deriv = []
for i in range(1, len(f)-1):

second_deriv.append((f[i-1] - 2*f[i] + f[i+1]) / dx**2)

What are the problems here?

Recalculating dx**2 every iteration.
Indexing the lists rather than iterating over them directly.
Many calls to the append function. Would be faster to use a list comprehension.
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Pure Python: reducing instructions

# Calculate common factor in advance
inv_dx2 = 1.0 / dx**2
# Use list comprehension
second_deriv = [

(f1 - 2*f2 + f3) * inv_dx2
for f1, f2, f3 in zip(f[:-2], f[1:-1], f[2:]) # Iterate directly over lists

]

Original version: 2.634s
New version: 1.926s

We could do even better if we used some iterator magic to avoid taking slices of the lists.
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Pure Python: Multiprocessing

Due to the existence of the Global Interpreter Lock (GIL), we can’t use multiple
threads to execute our Python code in parallel3.
However, for ‘embarrassingly parallel’ problems, we can use multiprocessing. This
avoids the GIL because each process gets its own set of data.
The inputs and outputs of multiprocessing functions must be ‘pickleable’.
Alternatives: the library tqdm offers a nicer interface, and gives you command line
progress bars!

3There is a built-in threading module, but it is only really of use for performing IO alongside
computation, as this can sidestep the GIL. It works similarly to multiprocessing, and may be of use for
IO-bound applications, such as those relying heavily on web services.
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Pure Python: Multiprocessing
As an example, lets say we’re trying to read a bunch of .csv files and we’re taking the
mean over some variable:

filenames = [f"my_data_{x}.csv" for x in range(1000)]
def get_mean(csv_filename):

...

# Serial
mean_values = [get_mean(filename) for filename in filenames]

# Multiprocessing
from multiprocessing import Pool

with Pool as p:
mean_values = p.map(get_mean, filenames)
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NumPy

NumPy is the basis of much of the scientific Python ecosystem. Many other
libraries use it as a backend, or can interface with it directly:

SciPy
Pandas
scikit-learn
xarray

To get the most out of NumPy, it’s important to do as little work in Python as
possible!
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NumPy: Vectorisation
NumPy’s ndarray should be used in place of lists for numerical calculations, but
your performance likely won’t improve if you’re still using Python for loops:

>>> import numpy as np
>>> from timeit import timeit
>>> a, b = np.random.random(10000000), np.random.random(10000000)
>>> list_a, list_b = list(a), list(b)
>>> timeit(lambda: [x+y for x, y in zip(list_a, list_b)], number=10) / 10
0.6331382742966525
>>> timeit(lambda: [x+y for x, y in zip(a,b)], number=10)) / 10
1.0967841257923283

You need to perform operations over whole arrays to get the full performance
benefits. This is known as vectorisation4.

>>> timeit(lambda: a+b, number=10) / 10
0.0733434968977235

4Not to be confused with the SIMD concept, although NumPy is probably offering that too!
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NumPy: Strided arrays

Internally, NumPy represents N-dimensional arrays via strided arrays.
To increment in the Nth dimension, you jump forward in memory by the Nth stride:

Many of NumPy’s key features are powered by stride tricks under the hood.
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NumPy: Slicing
List slicing creates a shallow copy of the original list. NumPy instead creates a view
of the original, which is much more efficient:

>>> a = np.random.random(100000000)
>>> list_a = list(a)
>>> timeit(lambda: list_a[1:-1], number=10) / 10
1.1540974205941893
>>> timeit(lambda: a[1:-1], number=10) / 10
9.231967851519585e-07

A view can have a different shape and stride to the original array, while still
referencing the same data:

>>> a[1:-1].shape
(99999998,)
>>> a[1:-1].strides # Multiplied by 8, as floats are 8 bytes long
(8,)
>>> a[::-1].strides # View of original array in reverse
(-8,)
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NumPy: Slicing

By playing with strides, NumPy can create more complex views.

>>> x = np.zeros((9, 9))
>>> x.shape
(9, 9)
>>> x.strides
(72, 8)
>>> x[1:-1:2,1:-1:2].shape
(4, 4)
>>> x[1:-1:2,1:-1:2].strides
(144, 16)
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NumPy: Transposes and Reshapes
NumPy can transform arrays in various ways without incurring expensive copies by
adjusting strides. For example, transposes and reshapes:

>>> x = np.zeros((3, 4))
>>> x.strides
(32, 8)
>>> x.T.strides
(8, 32)
>>> x.reshape((3, 2, 2)).strides
(32, 16, 8)
>>> x.ravel().strides # Get underlying 1D array
(8,)

However, if a transformation can’t be achieved by adjusting strides, NumPy will
quietly perform a copy – be careful of this!

>>> x.ravel().base is x # Is x.ravel() just a view to x?
True
>>> x[::2, :].ravel().base is x
False Speeding up Python|March 27th 2024|27/37



NumPy: Broadcasting
If you try to perform a binary operation over two arrays, they must have the same shape,
or be broadcastable to the same shape.

A dimension of size 1 can be
broadcasted to an arbitrary size, so
an array of shape (N,1) can be
added to one of size (N,M).
Dimensions may be automatically
added in the first position, so a (N,)
array can be considered (1,N),
(1,1,N), etc.
If you want to add new dimensions in
any other position, you need to add
them manually:

>>> a = np.random.random((10, 5))
>>> b = np.random.random(10)
>>> c = a + b[:, np.newaxis]
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NumPy: Performance

Slicing, broadcasting, reshapes, transposes, etc allows us to perform complex
calculations without copying data or using Python for loops.
Optimal memory access patterns are achieved when all arrays have a stride of
1*sizeof(dtype) in the rightmost dimension (or 0, if we’re broadcasting).

>>> a = np.random.random((10000, 10000))
>>> b = np.random.random((10000, 10000))
>>> from timeit import timeit
>>> timeit(lambda: a + b, number=10) / 10
0.29923874668311328
>>> timeit(lambda: a + b.T, number=10) / 10
0.487061994895339

If you’re using a reshaped/transposed array in many calculations, it might be more
efficient to make a copy with ‘corrected’ strides (use np.ascontiguousarray).
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NumPy: Avoiding new allocations

Most NumPy mathematical operations allow you to optionally specify an out parameter.
This lets you write to an existing array rather than building a new one for each
calculation.

>>> a = np.random.random(20000000)
>>> b = np.random.random(20000000)
>>> result = np.empty(20000000)
>>> timeit(lambda: a + b, number=10) / 10
0.0539267607033252
>>> timeit(lambda: np.add(a, b, out=result), number=10) / 10
0.0362531559076160
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NumPy: Case Study
Let’s use NumPy for a slightly harder problem: a 2D scalar Laplacian operator:

∇2fi,j = ∂2fi,j

∂x2 + ∂2fi,j

∂y2 ≈
fi−1,j − 2fi,j + fi+1,j

∆x2 + fi,j−1 − 2fi,j + fi,j+1
∆y2 (2)

The naive Python implementation isn’t the prettiest:

>>> def laplacian_python(f, dx, dy):
out = []
for i in range(1, len(f)-1):

out.append([])
for j in range(1, len(f[0])-1):

out[i-1].append(
(f[i-1][j] - 2 * f[i][j] + f[i+1][j]) / dx**2
+ (f[i][j-1] - 2 * f[i][j] + f[i][j+1]) / dy**2

)
return out
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NumPy: Case Study

The optimised version is worse:
def stencil_i(it):

im, i, ip = tee(it, 3)
next(i), next(ip), next(ip)
return zip(im, i, ip)

def stencil_ij(stencil_i):
im, i, ip = stencil_i
imj = iter(im)
ijm, ij, ijp = tee(iter(i), 3)
ipj = iter(ip)
next(imj), next(ij), next(ipj)
next(ijp), next(ijp)
return zip(imj, ijm, ij, ijp, ipj)

def laplacian_python_optimised(f, dx, dy):
invdx2 = 1.0 / dx**2
invdy2 = 1.0 / dy**2
inv2dx2dy2 = 2 * (invdx2 + invdy2)
return [

[
(imj + ipj) * invdx2
+ (ijm + ijp) * invdy2
- ij * inv2dx2dy2
for imj, ijm, ij, ijp, ipj in (

stencil_ij(stencil)
)

] for stencil in stencil_i(f)
]
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NumPy: Case Study
The NumPy version is cleaner and much faster:

>>> def laplacian_numpy(f, dx, dy):
return (

(f[:-2,1:-1] + f[2:,1:-1]) * (1.0 / dx**2)
+ (f[1:-1,:-2] + f[1:-1,2:]) * (1.0 / dy**2)
- f[1:-1,1:-1] * (2.0 / dx**2 + 2.0 / dy**2)

)
>>> timeit(lambda: laplacian_python(f, dx, dy), number=10) / 10
59.52381650721654
>>> timeit(lambda: laplacian_python_optimised(f, dx, dy), number=10) / 10
28.17065314420033
>>> timeit(lambda: laplacian_numpy(f, dx, dy), number=10) / 10
1.975178470998071

About 30 times faster than the naive version, and still 15 times faster after invasive
optimisation! But we can do better. . .
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Numba: Just-in-Time Compilation
Numba is a library that allows you to compile a large subset of Python/NumPy at
runtime and run it in parallel.
You can usually achieve this just by ‘decorating’ your existing functions:

@njit(parallel=True) # Only have to add this line, otherwise regular NumPy!
def laplacian_numba_parallel(f, dx, dy):

return (
(f[:-2,1:-1] + f[2:,1:-1]) * (1.0 / dx**2)
+ (f[1:-1,:-2] + f[1:-1,2:]) * (1.0 / dy**2)
- f[1:-1,1:-1] * (2.0 / dx**2 + 2.0 / dy**2)

)

The first time you run a Numba-compiled function will be slower than all
subsequent calls:

>>> timeit(lambda: laplacian_numba_parallel(f, dx, dy), number=1)
0.9609746721107513
>>> timeit(lambda: laplacian_numba_parallel(f, dx, dy), number=1)
0.5885984578635544
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Cython
Cython is a superset of Python which can be compiled (via C). It looks similar to
pure Python, but you have to specify types.

# file: laplacian.pyx
import numpy as np
cimport cython
from cython.parallel import prange

@cython.boundscheck(False)
@cython.wraparound(False)
cpdef laplacian_cython(double[:, ::1] f, double dx, double dy):

cdef Py_ssize_t i_max = f.shape[0]
cdef Py_ssize_t j_max = f.shape[1]
result = np.empty((i_max-2, j_max-2), dtype=np.double) # Regular NumPy array
cdef double[:, ::1] view = result # 2D memory view with stride 1 in last dim
cdef Py_ssize_t i, j
for i in prange(1, i_max-1, nogil=True): # uses OpenMp parallel for

for j in range(1, j_max-1):
view[i-1, j-1] = (

(f[i-1, j] - 2 * f[i, j] + f[i+1, j]) / dx**2
+ (f[i, j-1] - 2 * f[i, j] + f[i, j+1]) / dy**2

)
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How do they all stack up?

Version Time (s)

Pure Python 59.523816
Pure Python (opt) 28.170653
NumPy 1.9751784
Numba (serial) 0.57726825
Numba (parallel) 0.21948093
Cython 0.22601821

Cython and parallel Numba are roughly comparable: 300 times faster than where
we started!
This is on a 4 core machine. You may see even starker differences for bigger
problem sizes and more cores.
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Going even further

CuPy works just like NumPy, but runs on the GPU via CUDA (Nvidia only). Also
offers a CUDA JIT compiler.
Dask can be used to scale up NumPy to clusters/HPC, and work on data sets
larger than you can fit into memory.
mpi4py provides bindings for the Message Passing Interface (MPI)
Specialised optimised libraries for certain domains:

Deep learning: TensorFlow, PyTorch
Finite Element Methods: FEniCS, Firedrake
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