

- SC is the premier international forum for HPC
- Includes:
 - Birds-of-a-Feather sessions (BoFs)
 - Panels
 - Technical Papers
 - Workshops
 - Tutorials
 - Exhibition

Highlights from 2023

- 14,000+ in-person attendeesThe most *ever*
- 438 exhibitors
- Theme was I am HPC
- 14th PMBS Workshop

York at Supercomputing

University of York, England

Contributors

Serdar Bulut Phil Hasnip Dimitris Kolovos Ana Markovic Leandro Soares Indrusiak Steven A. Wright

Session Chairs

Steven A. Wright

- (Probably...) The most representation from York at Supercomputing
 - 2 in-person attendees, 1 remote (... as far as I'm aware!)
- 1 Poster, 1 Workshop, 2 Workshop papers

York at Supercomputing

Posters, Research Posters:	0
DFToy: A New Proxy App for DFT Calculations	
TP X0EX	
Workshop:	Đ
Distributed Data Locality-Aware Job Allocation	-
Data Analysis, Visualization, and Storage , Large Scale Systems , Programming Frameworks and System Software , Reproducibility ,	
Resource Management, Runtime Systems .	
•	
Workshop:	•
Optimizing Write Performance for Checkpointing to Parallel File Systems Using LSM-Trees	
Fault Handling and Tolerance , Large Scale Systems ,	

Sessions

Workshop:

PMBS23: The 14th International Workshop on Performance Modeling, Benchmarking, and Simulation of High-Performance Computer Systems Ð

Modeling and Simulation , Performance Measurement, Modeling, and Tools

Performance

Projected Performance Development

- Frontier is still the only acknowledged Exascale system (1.1 EFLOP/s)
- Europe now has two three Top 5 10 systems!
 - LUMI (310 380 PFLOP/s)
 - Leonardo (175 240 PFLOP/s)
 - MareNostrum 5 (140 PFLOP/s)
- Top 10 systems contribute >50% the sum performance (~7 EFLOP/s)
 - We have about 10 very big supercomputers and 490 others!

Big Surprises

- Aurora was expected to unseat Frontier, with estimated peak ~2 EFLOP/s
 - However, only half the machine was benchmarked, achieving #2 with 585 PFLOP/s
- #3 system is an Microsoft Azure cloud instance with NVIDIA H100 GPUs, achieving 561 PFLOP/s

Architectures

 A treemap of the Top 500 demonstrates the dominance of large systems, and of accelerators

The "Unofficial" List

	Peak	HPL	Compute	Concurrent	Cores+SMs	Compute Node Configuration	
System	Petaflops	Petaflops	Efficiency	Cores+SMs	1 Exaflops HPL	CPU+Accelerator	Interconnect
NSC/Tianjin "Tianhe-3"	2,050.0	1,567.6	76.5%	777	777	2 * Phytium Arm + Matrix 3000	400 Gb/sec TH-Express 3 (IB)
NSC/Wuxi "OceanLight"	1,500.0	1,220.0	81.3%	41,930,000	34,368,852	1 * Sunway SW26010-Pro	Custom InfiniBand
1 Oak Ridge "Frontier"	1,679.8	1,194.0	71.1%	8,699,904	7,286,352	1 * AMD Trento Epyc + 4 * AMD MI250X	200 Gb/sec Slingshot-11
2 Argonne "Aurora"	1,059.3	585.3	55.3%	4,742,808	8,102,655	2 * Intel Xeon Max 9470 + 6 * Intel GPU Max 9470	200 Gb/sec Slingshot-11
3 Microsoft Azure "Eagle"	846.8	561.2	66.3%	1,123,200	2,001,426	2 * Intel Xeon 8480C + 8 * Nvidia H100	400 Gb/sec NDR InfiniBand
4 RIKEN "Fugaku"	537.2	442.0	82.3%	7,630,848	17,263,971	l * Fujitsu A64FX	56 Gb/sec Tofu D
5 CSC "LUMI"	531.5	379.7	71.4%	2,725,704	7,178,573	1 * AMD Trento Epyc + 4 * AMD MI250X	200 Gb/sec Slingshot-11
6 CINECA "Leonardo"	304.5	238.7	78.4%	1,824,768	7,644,608	1 * Intel Xeon 8358 + 4 * Nvidia Al00	100 Gb/sec HDR InfiniBand
7 Oak Ridge "Summit"	200.8	148.6	74.0%	2,414,592	16,248,937	2 * IBM Power9 + 6 * Nvidia V100	100 Gb/sec EDR InfiniBand
8 BSC "MareNostrum 5 ACC"	234.0	138.2	59.1%	680,960	4,927,352	1 * Intel Xeon 8460Y + 4 * Nvidia H100	200 Gb/sec NDR InfiniBand
9 Nvidia "Eos"	188.7	121.4	64.4%	485,888	4,002,372	2 * Intel Xeon 8480C + 8 * Nvidia H100	400 Gb/sec NDR InfiniBand
10 Lawrence Livermore "Sierra"	125.7	94.6	75.3%	1,572,480	16,615,385	2 * IBM Power9 + 4 * Nvidia V100	100 Gb/sec EDR InfiniBand
11 NSC/Wuxi "TaihuLight"	125.4	93.1	74.2%	10,649,600	114,388,829	1 * Sunway SW26010	Custom InfiniBand
12 Lawrence Berkeley "Perlmutter"	113.0	79.2	70.1%	888,832	11,218,377	1 * AMD Epyc 7763 + 4 * Nvidia A100	200 Gb/sec Slingshot-11
13 Nvidia "Selene"	79.2	63.5	80.1%	555,520	8,753,861	2 * AMD Epyc 7742 + 8 * Nvidia Al00	100 Gb/sec HDR InfiniBand
14 NSC/Guangzhou "Tianhe-2A"	100.7	61.4	61.0%	4,981,760	81,083,333	2 * Intel Xeon 2692 + 3 * Matrix 2000	TH-Express 2+ Custom InfiniBand
15 Microsoft Azure "Explorer-WUS3"	87.0	54.0	62.0%	445,440	8,255,004	1 * AMD Epyc 7V12 + 4 * AMD MI250X	400 Gb/sec NDR InfiniBand
16 Nebius AI "ISEG"	86.8	46.5	53.6%	218,880	4,703,051	1 * Intel Xeon 8468 + 4 * Nvidia H100	400 Gb/sec NDR InfiniBand
17 GENCI-CINES "Adastra"	61.6	46.1	74.8%	319,072	6,921,302	1 * AMD Trento Epyc + 4 * AMD MI250X	200 Gb/sec Slingshot-ll
18 FZJ "JEWELS Booster Module"	71.0	44.1	62.2%	449,280	10,183,137	2 * AMD Epyc 7402 + 4 * Nvidia Al00	100 Gb/sec HDR InfiniBand
19 BSC "MareNostrum 5 GPP"	46.4	40.1	86.5%	725,760	18,098,753	2 * Intel Xeon 03H-LC/8480+	200 Gb/sec NDR InfiniBand
20 King Abdullah "Shaheen III"	39.6	35.7	90.0%	877,824	24,616,489	2 * AMD Epyc 9654	200 Gb/sec Slingshot-ll
21 Eni "HPC5"	51.7	35.5	68.5%	669,760	18,893,089	2 * Intel 6252 + 4* Nvidia V100	100 Gb/sec HDR InfiniBand
22 Naver Corp "Sejong"	40.8	33.0	80.9%	277,760	8,424,628	1 * AMD Epyc 7742 + 4 * Nvidia A100	100 Gb/sec HDR InfiniBand
23 Microsoft Azure "Voyager-EUS2"	39.5	30.1	76.0%	253,440	8,433,943	2 * AMD Epyc 7V12 + 8 * Nvidia A100	100 Gb/sec HDR InfiniBand
24 Los Alamos "Crossroads"	40.2	30.0	74.7%	660,800	22,004,662	2 * Intel Xeon CPU Max 9480	200 Gb/sec Slingshot-11
25 Pawsey Supercomputing "Setonix"	35.0	27.2	77.6%	181,248	6,673,343	1 * AMD Trento Epyc + 4 * AMD MI250X	200 Gb/sec Slingshot-ll
26 ExxonMobil "Discovery 5"	31.0	26.2	84.4%	232,000	8,871,893	1* AMD Epyc 7543 + 4 * Nvidia Al00	200 Gb/sec Slingshot-11

HPC Systems in the UK

(...in the Top 100)

- #39 ARCHER2, still top UK system, 19.54 PFAMD CPUs
- #41 Dawn, University of Cambridge, 19.46 PF
 Xeon Sapphire Rapids + Xe-HPC Ponte Vecchio
- #79 Cambridge-1, 9.68 PF
 - AMD CPUs + NVIDIA A100
- Just before SC, University of Bristol announced Isambard-AI
 - £225m investment in NVIDIA GH200

Conference Themes

- SC always has a varied programme, but the "big" theme this year was:
 - LLMs! (at least according to exhibitors)
 - APUs (Accelerated Processing Units)
 - DAOS
 - HPSF

New(?) Architectures

APUs and Superchips (and XPUs)

- APUs and Superchips combine a CPU and GPU on a single die
- Evolution of Summit/Sierra architecture
 - Essentially gain cache coherence and unified memory for CPU and GPU
 - CPU cores can handle things GPUs are bad at (I/O, divergence, etc)
- Intel abandoned their "XPU" in May
- AMD have MI300A in the works
- NVIDIA announced GH200 at SC

DAOS

	IO500 Production List - Overall Winner											
	0.1	RELEASE	SYSTEM	MOITUTITZHI								
٠	0	S023	Aurora	Argonne National Laboration	PLEASETING TYPE	SCORE 1	(018/5)	MD (ROOPyta)				
٠	0	SC23	SuperMUC-NG-Phase2-EC	LRZ	DAOS	32,165.90	10,066.09	102,705.41				
٠	0	SC23	Shaheen 11	King Abdullah University of Science and Technology	DAOS	2,588.85	742.90	8,472.50				
	0	19023	Leonardio	BuroHPC-CINECA	Lustre	797.04	709.52	195.35				
	0	SC23	IRIS	Memorial Sloan Kettaring Cancer Center	WebacD	648.95	807.12	521,79				
	0	ISC22	CTPAI	China Telecom Research Institute	DHOS	187,84	25.28	1225.01				
	0	1SC23	Imperial - hx cluster	Imperial College London	Spectrum scale	119.55	44.63	320.31				
	0	SC23	Earth Simulator 4	Japan Agency for Marine-Earth Science and Technology	EXASceler	101.68	48.10	215.38				
	0	SC23	Randi	Center for Research Informatics at University of Chicago	Spectrum Scale	60.83	31.0	5 119.36				
	0	SC23	Altair	Poznan Supercomputing and Networking Center	Lostro	\$3.70	1.1	4 325.39				
1	05	00					-	23				

- In HPC I/O, DAOS shines
 - Aurora has fastest (production) I/O system in town
 - Many papers in workshops about DAOS performance

HPSF

High Performance Software Foundation

- The Linux Foundation launched the HPSF
- Initial projects:
 - Spack, Kokkos, AMReX, WarpX, Trilinos, Apptainer, VTK-m, HPCToolkit, E4S, Charliecloud
- Membership:
 - •AWS, HPE, Intel, NVIDIA, CEA, Kitware, Uni of Oregon, CIQ, Various DoE labs

hpsfoundation.github.io

Performance Modeling, Benchmarking and Simulation

- 14th Year of PMBS
- PMBS is concerned with the evaluation and comparison of HPC systems and applications primarily through:
 - Analytical performance modeling
 - Benchmarking and performance analysis
 - Use of advanced simulation techniques

Performance Modeling, Benchmarking and Simulation

- Published 186 novel research papers at PMBS
- This year we accepted:
 - 10 full-length papers
 - 4 short paper

Highlights

h IEEE International Workshop on

Performance Modeling, Benchmarking and Simulation of High Performance Computer

held in conjunction with SC23: The International Conference for High Performance Computing, Networking, Storage and Analysis

Schedule

09:00 PMBS Introduction and Welcome

Steven A. Wright University of York, York, UK

Session 1: Best Papers

Chair: Steven A. Wright

09:10 - 09:30 Best Short Paper Physical Oscillator Model for Supercomputing [abstract] [paper]

Ayesha Afzal, Georg Hager, Gerhard Wellein Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany

09:30 - 10:00 Best Paper Comparative evaluation of bandwidth-bound applications on the Intel Xeon CPU MAX Series [abstract] [paper]

István Z. Reguly

- Sessions:
 - Best Papers
 - Architecture Evaluations
 - Short Papers
 - Benchmarking
 - Scheduling
 - Performance Modeling

Performance Modeling, Benchmarking and Simulation

Best Paper

Comparative evaluation of Intel Xeon CPU MAX

- Intel Xeon CPU MAX is a "fat" x86 CPU architecture with on-chip High Bandwidth Memory (HBM)
- •Xeon CPU MAX 9480
 - •56 cores (1.9-2.6 GHz)
 - •64 GB HBM2e
 - 4 NUMA regions
 - Dual socket

Best Paper

Comparative evaluation of Intel Xeon CPU MAX

- The Competition:AMD EPYC 7V73X
 - •60 cores (2.2-3.5 GHz)
 - •768 MB L3, 448 GB DDR4
 - Intel Xeon Platinum 8360Y
 - •36 cores (2.4-2.8 GHz)
 - •512 GB DDR4

Applications

- Test suite (mostly) based on OPS/OP2 DSL apps
 - Structured mesh stencil codes (varying computational intensity)
 - Unstructured mesh codes
 - Test harness to streamline compilation & runs: <u>https://github.com/reguly/tests</u>
- CloverLeaf 2D/3D low order + lots of small boundary loops (DP)
- Acoustic high order, cache-intensive (SP)
- OpenSBLI more data movement (SA), more recompute (SN) versions (DP)
- miniWeather atmospheric dynamics, low order (DP)
- MG-CFD lots of indirect accesses, data races (DP)
- Volna fewer computations with indirections/races (SP)
- +miniBUDE compute/latency intensive (SP)

Comparison of best parallelizations

- CloverLeaf most BW bound.
 3.5-4.3x
- OpenSBLI SN/Acoustic cache & latency. 2-3.3x
- MG-CFD/volna lantecy. 2-3x
- miniBUDE compute, latency 1.36-1.8x
- Vs. A100: 1.1-2.2x slower
 - No MPI comms on GPU

Speedup relative to Intel Xeon Platinum 8360Y and AMD EPYC 7V73X

	CloverLeaf 2	D CloverLeaf 3	3D OpenSBLI SA	OpenSBLI SN	Acoustic	MG-CFD 8M	volna	miniWeather	miniBUDE
8360	DY 4.27	3.81	4.21	3.36	2.33	2.49	3.03	3.82	1.88
7V7.	3X 3.82	3.52	3.83	2.86	1.98	1.95	2.99	3.17	1.36

Comparison to more CPUs & GPUs

Other Notable Papers

Power Analysis of NERSC Workloads

- Paper analyses the power characteristics of NERSC production workloads
 - Large gap between average and peak power usage
 - Large swing in power during application (with CPU/GPU applications)
- Z. Zhao, et al. 2023. Power Analysis of NERSC Production Workloads., 10.1145/3624062.3624200

Other Notable Papers

Verifying Performance Guidelines for MPI Collectives

- Paper analyses performance guidelines for MPI collectives
 - Propose a benchmarking tool to test performance guidelines (e.g. MPI_Scatter ≤ MPI_Bcast)
 - Demonstrate that in many cases, MPI libraries require optimisation (because they fail some tests!)

 S. Hunold. 2023. Verifying Performance Guidelines for MPI Collectives at Scale., 10.1145/3624062.3625532