
Introduction to Version Control with Git
and GitHub

Working Alone and Working Collaboratively

Killian Murphy, Peter Hill
University of York

Goals for the session:
● Basic understanding of what version control, git, and GitHub are

● Knowledge of a few important git-related terms

● Know how to:

○ create a version controlled project

○ make changes under version control

○ undo changes to a project

○ make a local copy of a project

○ work with others on a version controlled project

Part 1: Introductory Information

What is Version Control?
Any means by which you track changes to something:

We’ve all done it!

Is this effective version control?

work.py work_final.py work_final_2.py work_final_2
_really_final.py

What is Version Control?
● Structured way of keeping track of changes to files

● Implemented in different "version control systems" (VCS)

● Typically share the concept of a history, the changes which

make up the history, and the ability to move freely back and

forth within the history

● The most popular VCS is git, which we will be focusing on today

Why Version Control?
● Keeps a labelled history of all changes made to a project, and

lets you rewind them if something goes wrong

● Lets you experiment with changes to a project whilst keeping

stable versions of the project untouched

● Provides lots of convenience features for working with other

people on a project

● Can act as a backup of your projects, especially when using a

hosted service like GitHub

● Many tools (like IDEs) have git integrations

What is git?
● A specific version control system,

created by the guy who created the
Linux kernel (the myth goes that he
named it by his personal reputation)

● A "distributed" version control system -
many people can have copies of the
stuff under version control and they
don’t need to all be in sync

● One of the most important
programming tools you can benefit
from becoming comfortable with

What is GitHub?
● A service for hosting, organising, and

collaborating on projects that are under

version control
○ Other git services are available

● Provides a consistent way to store and share

version-controlled projects

● Can act as a portfolio of sorts

● Has a whole host of other features (project

management, continuous integration, etc.)

● See the PlasmaFAIR GitHub organisation for

an example

https://github.com/PlasmaFAIR/

Git Glossary: Basics
● Repository (repo): a project under version control

● History: timeline of changes to your repo

● Clone: make a local copy of a repo, including its history

● Commit: a labelled set of specific change to files in your repo

● Push / pull: synchronise history with another copy of your repo

● Working tree: the current state of your project and files on disk

● Track: keep under version control

Part 2: Working Alone

Creating Your First Repository - GUI

Click this!

Creating Your First Repository - CLI

mkdir my_first_repository

cd my_first_repository

git init

git config --global init.defaultBranch main

(It is not important to understand this first command - you will only ever need to run it once, and if you’ve never used git before you will likely never notice what it has changed)

Initialized empty Git repository in
/Users/klcm500/practical_version_control/my_first_repository/.git/

On success:

Creating Your First Repository - CLI

git status

● This is going to be our "default" command — if you're ever
not sure what to do, run git status, it often has useful
info!

Creating Your First Repository
● README.md: A file describing the project you have under

version control. Typically written in Markdown and is nicely

rendered on the GitHub page for your repository

● .gitignore: A file describing the things in your repository that

you don’t want to track

● License: a document describing the rights and permissions you

grant to others who may wish to use your software
○ In British English this is correctly spelled "licence" which is a noun — "license" is the verb, c.f. "advice/advise"

1. .gitignore file generator: https://www.toptal.com/developers/gitignore/
2. Software licence picker: https://choosealicense.com/

https://daringfireball.net/projects/markdown/
https://www.toptal.com/developers/gitignore/
https://choosealicense.com/

Creating Your First Repository
● Description: a one-line description of the repository contents

● Privacy: the visibility of your repository - just you or anybody?

● Organisation: the ownership of your repository - you or some

organisation (e.g. university-of-york) that you are a member of?

Adding first file
● Use your favourite text editor to create README.md

Hello World

This is a text file in an example repository

You can add whatever text you want here, and
Git will preserve each version of this file
so we can view the changes through time.

This initial file contains a tpyo we'll fix
later.

Making Your First Commit - GUI

● Take a look at what happens

in the GitHub desktop

window

File status (added in this case)

Our changes

Making Your First Commit - CLI

● Run git status again and note the different output

● Git is aware that you have added a file

Making Your First Commit - GUI
● Add a commit label and a commit message to the box
● A nice way to think about commit labels is that they

should concisely complete the following sentence:

"[This commit will…]" e.g.

"[This commit will…] Create README.md"

● The commit message can contain as little or as much
as appropriate to help you and others understand
what the change consists of (be kind to Future You!)

● Best practice is to keep first line short, like an email
subject line, and optionally a longer explanation
below, separated by a blank line

● How frequently should you commit? What should be
in a commit? oh, look what the default message is for a new file!

clever machine

Making Your First Commit - CLI
● Need to set up your name and email address

○ git config --global user.name "YOUR NAME"
○ git config --global user.email "your@email.address"

● This will make your name and email address appear correctly on any

commits you make to repositories

● Only need to do this once on a system!

● It's also a good idea to set the text editor to whatever your favourite is:

○ git config --global core.editor "nano"
○ Nano is a pretty sensible default if you don't have a favourite

■ Although Emacs is much better if you want an editor that does everything and you enjoy tinkering!

○ Press F1 in nano for help

Making Your First Commit - CLI

git add README.md

^ Tells git that you’d like to add this file to the commit

git commit

^ Opens up a text editor for you to add a label and message to the commit

THEN

OR

git commit -m "<message>"

^ To immediately write a commit message (without a longer description)

Making Your First Commit - GUI

● Switch over to the “History”

tab (View > History)

● You should be able to see

your recent commit and its

details

● Right now, this exists only on

your computer

Making Your First Commit - CLI

● Run git log to see the repository history

● You should see a single commit

● It will have your name and address in the ‘Author’ field

● It will have the date and time of creation in the ‘Date’ field

● Your commit label and message will be present

● This is how you communicate high-level changes in the

repository to other people / yourself!

Making a repo on Github - GUI

Now click this!

Making a repo on Github - CLI

git remote add origin <YOUR REPO URL>

^ Creates a reference in your copy of the repository to an ‘origin’ repository on GitHub

● Navigate to
https://github.com/your-username

● Select the ‘Repositories’ tab
● Select the green ‘New’ icon
● Don't add a README or .gitignore
● Make it public rather than private, will

simplify things later!
● From the front page of your new repo,

press the green Code button and copy the
URL

● Paste it into the following command:

Cl
ic

k
th

is
!

https://github.com/your-username

Pushing Your First Commit - GUI

Click here now!

Pushing Your First Commit - CLI

git push --set-upstream origin main

^ Only need to do it this way the first time we push to a new branch. --set-upstream links your local branch main with a
branch main in GitHub. Normally, we just need:

git push

Pushing Your First Commit
● Your repository is now on GitHub:

https://github.com/<username>/<repo-name>

● This means it is:
○ Backed up!

○ Easily shareable!

○ Easily accessible from other machines!

● Now delete the repository from

your computer using the file

explorer / finder / rm command

G
uess w

hat w
e’re going to press?

Cloning Your Repository - GUI

● Getting your code and all of its

history back is as easy as a few

button clicks

● Once it has finished cloning,

we should be back to where

we were before deleting

● You can clone other GitHub

users’ public repositories too!

Click this

Then th
is

Cloning Your Repository - CLI

git clone https://github.com/<username>/<repo-name>

● If the repository is private, you will need to set up a personal access token before you can clone the
repository

● You can also set up passwordless authentication using SSH keys, see the GitHub documentation for more
details
○ This is a Good Idea!

https://docs.github.com/en/authentication/keeping-your-account-and-data-secure/creating-a-personal-access-token
https://docs.github.com/en/authentication/connecting-to-github-with-ssh/adding-a-new-ssh-key-to-your-github-account

Making Changes
● Let's fix up the deliberate mistake in our README

Hello World

This is a text file in an example repository

You can add whatever text you want here, and
Git will preserve each version of this file
so we can view the changes through time.

This initial file contains a typo we'll fix
later.

● Add the file and commit it
○ What would a good commit message be for this change? Discuss

Viewing diffs - CLI
$ git status
On branch main
Changes not staged for commit:
 (use "git add <file>..." to update what will be committed)
 (use "git restore <file>..." to discard changes in working directory)
 modified: README.md

no changes added to commit (use "git add" and/or "git commit -a")

$ git diff
diff --git a/README.md b/README.md
index b277f80..ea21a73 100644
--- a/README.md
+++ b/README.md
@@ -6,5 +6,5 @@ You can add whatever text you want here, and
Git will preserve each version of this file
so we can view the changes through time.

-This initial file contains a tpyo we'll fix
+This initial file contains a typo we'll fix
later.

This line has been removed

This line has been added

This header is because diff is a more
general tool for comparing text files

This line shows the line number and
context (e.g. function name)

Git commands in the GUI

git status

git add

git commit

git log

git diff

git push

git --help

Making More Changes
● Go ahead and make some more commits to your repository:

○ On the command line, don't forget the two-step dance: add, then commit

● Make sure to push commits when you’ve made them!
○ You don't have to push after every single commit, as long as you remember to push at some point

● Think and chat about the way you like to work and how that might map onto

version control history:
○ Do you work in big chunks and then sign off for the day?

○ Do you often switch tasks and have trouble figuring out where you were when you left off?

○ Do you program first and plan later? Or the other way around?!

● Ask any questions you’d like!

Undoing Changes
● One of the purposes of version control is to let you undo changes

● There are different changes we might want to undo:

○ Changes to the working tree

○ Change files staged for the next commit

○ Changes made in previous commits

○ History (!!) (not covered here)

Undoing Changes to Working Tree
● The simplest!

● Github Desktop: right-click -> Discard Changes

● CLI: git restore <file>...
○ For example: git restore README.md

○ If you forget, run git status for a reminder

● DANGER: git isn't tracking these files, so there's no way to undo this undo!

Undoing Staged Changes

Stage/unstage

You can even stage/unstage individual lines

Undoing Staged Changes
● CLI: git restore --staged <file>...

○ For example: git restore --staged README.md

○ If you forget, run git status for a reminder

● This is exactly the opposite of git add <file>...

Commit Hashes
● Each commit in the history has a unique

identifier associated with it, the commit

hash

● This is a long string that looks something

like this:

0efd1cb9e37318404b76de7c99e2
6fbef16ef3a3

● You only ever need the first 7 characters

of the ID!

● It is used in any Git operation that needs

to refer to a specific commit

H
er

e!

Here!

Reverting A Commit - GUI
● GitHub desktop can’t revert

many commits at once

● We can easily revert commits

one-by-one!

● Switch to the “History” tab and

right-click the latest commit

Click this

Reverting A Commit - GUI
● We now have a new commit that reverts

the previously made changes

● We can play around with this and see if it

works

● If we are happy with the reversion, we can

push to reflect the reversion on GitHub

● With GitHub Desktop, we need to do this

for each commit we want to revert, in

reverse order

● With the command line, reverting multiple

commits at once is possible - not covering

that today

Reverting A Commit - CLI

● First need to identify the ID of the commit we want to revert - the last commit we made. Take
a look at git log output:

commit f7cfe07b8d7691241ebca90c19b187da142350c1 (HEAD -> main)

We only need the first 7 characters of this ID string!

● Then we run:

git revert f7cfe07

Since we are making a new commit which reverts the previous commit, we are prompted for a label and a
message. This is a good opportunity to document why we are reverting a commit

● If we are happy with the reversion, we can push the changes as with any other commit

Summary
● Create a repository, or clone an existing repository

● Make changes in the repository and commit them, adding a

label and a message

● Push the changes to GitHub to synchronize

● Revert commits if you find you have broken something!

Part 3: Working Collaboratively

Branches - Overview

A F

ED

CB

BRANCH

MERGE

● Branching creates a parallel stream of
changes within the repository

● Changes on one branch aren’t reflected
on another branch, unless you want
them to be!

Branches - Overview

● Branches are great for working on new things once you’ve got

something working - make changes on a branch knowing that

they won’t affect changes on the ‘main’ branch

● Branches are great for working together - multiple people can

work on different changes without interfering with each other

● At some point you will want to bring all of these changes back

into one place - this is called a ‘merge’

Git Glossary: Branching
● Branch: a set of changes in your repository, being tracked in

parallel to your ‘main’ branch

● Merge: to bring changes from one branch into another

● Conflict: a situation where competing changes have been made to

some part of your repository

● Pull Request: a way of reviewing, labelling, and discussing a merge

before it takes place

● Fork: make a copy linked to the original repo

Creating A Branch - GUI

Click this and call it
"sandwiches"

Creating A Branch - CLI

^ Create a new branch called "sandwiches" and
immediately switch to it

git switch --create sandwiches

Note: this is a newer wrapper around older commands, so you might see people online referring to git branch and git
checkout. Those commands will still work, and you might have to use them if you have a git version older than 2.27

Publishing Branches

● The branch currently only resides in our local repository

● We can publish the branch to GitHub in the same way we

published the main branch at the start of the tutorial:
○ GUI users can click Publish branch

○ CLI users can run git push –-set-upstream origin sandwiches

● Now other people could see your branches when they clone

your repository

Add a new file

A tasty sandwich

```
bread
bread
```

Todos:
- [] add filling

sandwich.md ● Let's add a new file: sandwich.md
● We'll fill it in later!
● Make sure you're on your new

branch ("sandwiches" rather than
"main")

● Add the new file, and commit it
with a useful message

Working On Branches

● Switch back to your main branch. What do you notice?
○ CLI users: git switch main (note no --create flag!)

○ CLI users: try git switch m<tab>

● Have a look in your file explorer / finder / directory listing in

your terminal in between switching branches

Working On Branches
● Git is keeping track of changes to these branches separately

● Files that only exist on one branch will not be visible to you if

you have switched away from that branch

● If we now want our main branch to reflect changes made on

sandwiches, we need to merge sandwiches into main

● Before we do this, we can review the changes using a Pull

Request
○ Slight misnomer from Github here, we're really requesting to merge branches. Oh well, there are two

hard problems in computer science…

Creating A Pull Request
● Navigate to https://github.com/your-username/your-repo-name

● Select the ‘Pull requests’ tab

● Select ‘New pull request’

● We need to select two branches to be compared for a merge - we want to

set main as our base branch (the branch into which changes will be merged)

and sandwiches as the compare branch, the branch from which changes will

be taken

● GitHub will show us some information about the changes that we are

looking to merge

● With these branches correctly selected, select Create pull request

https://github.com/your-username/your-repo-name

Creating A Pull Request
● Now we can add a title and formatted

description of the changes to make it easy
for us and others to understand the changes
to be merged

● PRs are a good opportunity for you to
describe the changes to yourself, review
them, and make sure you are happy with
them, before merging them with your main
branch

● If there are multiple people working on your
repository this is a great time for them to
have a look at your changes and add any
comments they might have!

● Let’s add a nice description and click Create
pull request, then see if we can get
somebody else to review your changes

Merging A Pull Request

● Once you are done experimenting with your Pull Request,

select Merge pull request:
○ This takes the changes from the compare branch - the branch you created

earlier - and merges them onto the base branch - the main branch of your

repository

○ In this case, the changes should be able to be merged automatically

○ After merging, you can select ‘Delete branch’ - we are finished merging the

changes and in this case don’t need to keep it!

● We now need to make sure our local repositories have kept up

with the changes that have happened on GitHub…

Keeping Repositories Up To Date - GUI
● We have made some changes in GitHub

that we need to reflect in our local

repository!

● In the GitHub Desktop app, we can use the

‘Fetch origin’ button to get the latest

changes from GitHub

● If we switch back to the main branch after

doing so, we will see a Merge commit in the

history

● We can also delete our branch that has

been merged, since we are finished with it

C
lick this!

Keeping Repositories Up To Date - CLI

git switch main

^ Switch back to our main branch, if we aren’t already on it

git pull

^ Get the changes from GitHub and reflect them in our local repository

git branch -d sandwiches

^ Delete the local copy of sandwiches, as we have finished with it

Collaborating With Others

● Git is distributed — every copy of a repo has all of its history, can make

branches, and can pull branches from other copies

● We usually want to have one "official" repo that is the main version

● On Github we can add collaborators to our repos
○ Settings > Collaborators > Add People

○ But this has to be done by maintainers of the repo

Collaborating With Others

● What if we want to contribute to someone else's repo?

● Fork: make a copy linked to the original repo

● Github allows us to make PRs from forks into the original without needing to

be added as a collaborator
○ Only approved people can actually merge them though!

Fork

Introducing Conflicts
● Conflicts happen when something in a file has been changed in

more than one place

● Git doesn’t know what you want the file to contain, so you have

to help it!

● One way this can happen is when multiple people work on e.g.

the same bit of code on their own branches, and you want to

merge those branches back together

Conflicting PRs
● Partner up with the person next to you

● Decide who is "person A" and who is "person 1"

Person A
● Fork Person 1's repo (you might need to

rename it!)
● Clone it locally (Code to get the URL)
● Make a new branch person-A
● Add a filling to sandwich.md and check the

box ([] → [x])
● Commit and push to your fork of the repo
● Open a PR of your person-A branch into

Person 1's main branch

Person 1
● Make a new branch person-1
● Add a different filling to sandwich.md and

check the box ([] → [x])
● Commit and push to your repo
● Open a PR of your person-1 branch into

your main branch

Resolving Conflicts
● We now have two branches to merge onto the main branch!

● Set up a Pull Request for each of these branches

● You should be able to merge the Pull Request for one of these

branches without conflicts

● After merging the first one, the second Pull Request should

now tell you that there are conflicts to be resolved

● We have to tell Git what we want the conflicting file to look like

in order to continue

Resolving Conflicts
● If you select ‘Resolve conflicts’ on the Pull Request,

GitHub will show you something like this
● This is git's conflict syntax - anything above the line

of === characters is what that section of the file
looks like in the conflicting branch

● Below the line of === characters is what that
section of the file looks like on the base branch

● We can choose how we want to resolve the conflict
by removing everything we don’t want to keep,
including the Git conflict markers!

● Once you are done, select Mark as resolved — you
can now Commit merge to resolve the conflicts and
continue

● Notice how the checkbox didn't cause a conflict,
even though you both changed it?

● If you merge on the command line, git puts these
conflict markers straight into the file and expects
you to fix them before you merge

A tasty sandwich

```
bread
<<<<<<< person-1
oh look, a conflict
=======
hummus
>>>>>>> main
bread
```

Todos:

- [x] add filling

Summary
● Create a branch in a repository, allowing separate streams of changes to be

tracked

● Switch between branches in a repository if you need to work on multiple

streams of changes simultaneously

● Create pull requests when you want to merge changes from a branch into

another branch

● Merge a pull request when you and collaborators are happy with the changes

● Pull changes from GitHub to synchronise your local repository

● Resolve conflicts when there are overlapping changes to some part of your

repository

Additional Resources
● https://swcarpentry.github.io/git-novice/

● https://chryswoods.com/introducing_git/

● https://docs.github.com/en/get-started/quickstart/hello-world

● https://git-scm.com

https://swcarpentry.github.io/git-novice/
https://chryswoods.com/introducing_git/
https://docs.github.com/en/get-started/quickstart/hello-world
https://git-scm.com

