
Research Coding Club
3rd May 2023

MATLAB: How to
speed up your code
and run jobs on
Viking from MATLAB
Philip Harrison

Today's talk

● Topic: Introduction on how to speed up your MATLAB code
● How to measure execution time
● Simple steps

○ Pre-assign arrays, vectorisation, built-in functions
● Use parallelisation

○ On your computer
● Use Viking

○ What is Viking?
○ Prerequisites and setup
○ Using Viking from within MATLAB
○ Getting data onto Viking

● Final comments

Why speed up your code?

● Who wants to wait for code to run?
● Faster code equals

○ More efficient use of time and resources
○ Get more research done
○ Use your computer for longer
○ Good habit to get into - might not make much difference now, but could in the

future
● Get the low hanging fruit first
● Strike a balance - is the time you're spending to speed up your code

longer than the time saved?

How to measure execution time

● How long does it take my code to
run?

● Simple approach
○ Stopwatch - tic and toc

● More complex approach
○ Code profiler
○ Simple to use 'Run and time'
○ Produces interactive report:

■ Execution time
■ Number of calls to a function

● Mathworks help: Measure
performance of your program

https://uk.mathworks.com/help/matlab/matlab_prog/measure-performance-of-your-program.html
https://uk.mathworks.com/help/matlab/matlab_prog/measure-performance-of-your-program.html

Simple ways to speed up MATLAB code:
Preallocate arrays

● Resizing arrays within a loop takes extra time to find more memory

● Version on right with preallocation approximately 6 times faster
● MATLAB will warn you in the code editor, code profiler and code

analyser
● Mathworks help - Preallocating arrays

tic
x = zeros(1,1000000);
for k = 2:1000000
 x(k) = x(k-1) + 5;
end
toc

Elapsed time is 0.017111 seconds.

tic
x = 0;
for k = 2:1000000
 x(k) = x(k-1) + 5;
end
toc

Elapsed time is 0.107429 seconds.

vs

https://uk.mathworks.com/help/matlab/matlab_prog/preallocating-arrays.html

Simple ways to speed up MATLAB code:
Vectorisation

● MATLAB optimised for vector and matrix operations
● Vector and matrix algebra and functions

● Version with vectorisation approximately 2 times faster
● Code is neater, more readable, fewer chances for bugs
● Mathworks help - Vectorization

tic
t = 0:.01:10;
y = sin(t);
toc

Elapsed time is 0.006431 seconds.

tic
i = 0;
for t = 0:.01:10
 i = i + 1;
 y(i) = sin(t);
end
toc

Elapsed time is 0.013842 seconds.

vs

https://uk.mathworks.com/help/matlab/matlab_prog/vectorization.html

Simple ways to speed up MATLAB code:
Use built-in functions

● Don't reinvent the wheel!
● Optimised for speed - preallocation, vectorisation
● Written by MATLAB experts, refined over time
● Check available Toolboxes

○ All licensed ones should be installed on managed PCs
○ Add relevant toolboxes on unmanaged/personal devices

● Search Mathworks FileExchange
○ Community repository of code examples, functions, applications
○ https://uk.mathworks.com/matlabcentral/fileexchange/

● Search internet

https://uk.mathworks.com/matlabcentral/fileexchange/

Simple ways to speed up MATLAB code:
Parallelisation

● Normal for loops executes the code sequentially
● parfor loops execute in parallel - simultaneous execution!
● Can significantly speed up execution
● Can only use if each loop execution is independent of the others
● Useful for analysing multiple input data files or independent

simulations
● Just swap for with parfor
● Uses the multiple cores in CPU of your computer
● Mathworks help - Decide when to use parfor

https://uk.mathworks.com/help/parallel-computing/decide-when-to-use-parfor.html

Simple ways to speed up MATLAB code:
Parallelisation

● Parallel version is 2 times faster with 4 cores
● Creates a parallel pool - but this takes time to create for the first run

(extra 60 seconds)

tic
n = 200;
A = 500;
a = zeros(1,n);
for i = 1:n
 a(i) = max(abs(eig(rand(A))));
end
toc

Elapsed time is 21.236543 seconds

tic
n = 200;
A = 500;
a = zeros(1,n);
parfor i = 1:n
 a(i) = max(abs(eig(rand(A))));
end
toc

Elapsed time is 9.479539

vs

What is Viking?

● University of York's Research Computing Cluster
● Cluster = lots of computers working as a single system
● Free at the point of use
● Offload code execution from local computer to the cluster
● Typically use Linux command line to interact with it
● Submit 'jobs' requesting specific resources

○ Managed by Slurm - workload manager and job scheduler
● Lots more information - Viking Wiki pages

https://wiki.york.ac.uk/display/RCS/Viking+-+University+of+York+Research+Computing+Cluster

Viking & MATLAB Prerequisites

● Need to request access - user to complete the Viking User
Application Form

● But need a project code first - supervisor/PI completes the Viking
Project Application Form

● Can only connect to Viking from on-campus or via the VPN
● MATLAB Parallel Computing Toolbox on local MATLAB instance

○ Installed by default on managed devices and via Software Center
○ Personal devices - make sure to add it

● Local MATLAB version that matches a version on Viking
○ Currently: 2018a, 2020a, 2020b, 2021a, 2022a

https://docs.google.com/forms/d/e/1FAIpQLSfwIm3DqBe0aB2vA6AWrJr7DrFO20EY2wxA7fSrFS8TEZaNrA/viewform
https://docs.google.com/forms/d/e/1FAIpQLSfwIm3DqBe0aB2vA6AWrJr7DrFO20EY2wxA7fSrFS8TEZaNrA/viewform
https://docs.google.com/forms/d/e/1FAIpQLSfAcITvei2F-REOB17XXIFSw0hStgLl17cDj7RBBcg6bffamA/viewform
https://docs.google.com/forms/d/e/1FAIpQLSfAcITvei2F-REOB17XXIFSw0hStgLl17cDj7RBBcg6bffamA/viewform

Cluster Profiles

● Need a Cluster Profile to tell MATLAB how to communicate with
Viking

● Automatically generated using scripts - download scripts from the
Viking MATLAB Wiki page
○ Only tested on Windows so far, but should work for Linux and Mac

● Put scripts on local machine, make sure the location is in MATLAB's
path, e.g.
○ addpath(genpath('C:\Users\abc123\Documents\MATLAB\Viking'))

● Run creation script
○ configCluster

● Only information required is University username, e.g. abc123
● Creates a cluster profile called 'viking'

https://wiki.york.ac.uk/download/attachments/221908001/CreateVikingClusterProfile.zip?version=1&modificationDate=1683130347503&api=v2
https://wiki.york.ac.uk/display/RCS/VK13%29+Using+MATLAB+Parallel+computing+on+Viking

Cluster Profiles

●

Cluster Profile Validation

● Need to Check that the profile, your account and connection are working
● Parallel > Create and Manage Clusters
● Click 'Validation' tab not the 'Validate button'
● Update 'Number of workers to use' to 4
● Untick 'Parallel pool test (parpool)

X

Cluster Profile Validation

● Click 'Validate' button
● Will be asked if using an identity file: No
● Will be asked for your university password
● Then wait! Successful validation looks like:

Demo time…

Useful commands

● c = parcluster('viking') - creates a cluster object using the
viking profile

● Modify and add properties with:
○ c.AdditionalProperties.NumNodes = 1;
○ c.AdditionalProperties.ProcsPerNode = 9;

● Submit jobs with batch
○ myjob = batch(c, 'scriptname', 'pool', 8)
○ Number of procs/workers requested must be 1 greater than specified with pool
○ Scripts are on local device and sent to Viking
○ Mathworks batch examples

https://uk.mathworks.com/help/parallel-computing/batch.html
https://uk.mathworks.com/help/parallel-computing/run-a-batch-job.html

Useful commands

● diary(myjob) - returns elapsed time
● load(myjob) - loads all workspace variables from specified job
● Job Monitor (Environment Toolbar > Parallel > Job Monitor)

○ Shows status of jobs
● Can submit job(s) then close MATLAB and jobs will run on Viking
● After reopening MATLAB get the results back using either:

○ Right-click on job ID in the Job Monitor window > Load Variables
○ Or

c = parcluster('viking');
job8 = findJob(c, 'ID', 8);
load(job8);

Getting data on and off Viking

● Windows: WinSCP
○ In Software Center on managed PCs
○ Personal devices download from

https://winscp.net/eng/download.php
● Mac: Filezilla

○ Download from:
https://filezilla-project.org/

● Use /scratch folder to store data
○ Fast
○ No limit on number of files
○ 3 TB by default
○ WARNING - scratch is not backed up

Final comments

● Just an outline and introduction
● Lots of options and configurations
● Experiment - find out what works/doesn't work
● Viking 2 is coming later in the year

○ Hopefully with automatic cluster discover!
● Using Linux commands are a useful complement to check on job

progress, files etc

Sources of help & information

● Research Coding Club Slack channel and drop-in sessions
○ Webpages with previous talks - e.g. Parallelisation

● Email to IT Support - itsupport@york.ac.uk
● Mathworks help - Techniques for Improving Performance
● MATLAB training:

○ MATLAB Onramp (2 hours)
○ MATLAB Fundamentals (16.5 hours)
○ MATLAB for Data Processing and Visualization (8 hours)
○ MATLAB Programming Techniques (16 hours)
○ Object-Oriented Programming Onramp (2 hours)

https://researchcodingclub.github.io/archive/
https://uk.mathworks.com/help/matlab/matlab_prog/techniques-for-improving-performance.html
https://matlabacademy.mathworks.com/details/matlab-onramp/gettingstarted
https://matlabacademy.mathworks.com/details/matlab-fundamentals/mlbe
https://matlabacademy.mathworks.com/details/matlab-for-data-processing-and-visualization/mlvi
https://matlabacademy.mathworks.com/details/matlab-programming-techniques/mlpr
https://matlabacademy.mathworks.com/details/object-oriented-programming-onramp/oroop

Questions?

