Write faster code

An introduction to profiling, optimisation and parallelisation

Motivation

Running software takes time

- How long should a program take to run?
 - Want an immediate answer? A few seconds
 - Coffee Break? A few minutes
 - Lunch Break? An hour
 - Overnight? Several hours
 - Etc.

Running software takes time

- How often does it need to be run?
 - Want an immediate answer? Many times a day
 - Coffee Break? A few times a day
 - Lunch Break? Once a day
 - Overnight? Once a day
 - **Etc**.

Not necessarily for quicker results

- Higher throughput
- Larger problem sizes
- More accurate results
- Can experiment with problem inputs

So what can we do?

The plan...

When should we optimise?

- At the design stage
- At the **end** of the development stage
- When you need to!

"Premature optimisation is the root of all evil"

- Donald Knuth

What should we optimise?

- Profiling: Identify performance hotspots
- Look for low-hanging fruit
- Consider a range of relevant problems
 - Different problem sizes
 - Different problem types
 - Running on hardware

How should we optimise?

- Inefficient implementations
 - Algorithm/data structure choice
 - Language choice
 - Redundant computation
 - Can come at the cost of readability

How should we optimise?

- Parallelisation
 - Most computers these days have several computing cores
 - Allows scaling to larger machines/clusters
- Using external libraries
 - May already be optimised
 - Sometimes even parallelised

Profiling

What is profiling?

- Identify regions of the code that are taking significant time
- Usually function-level, sometimes line-level
- Can be graphical or command-line
- Profiling tools available for many languages

What can it tell you?

- Number of calls: How many times each function was called
- Cumulative time: Time spent in the routine, *including* any subsequent function calls
- Exclusive time: Time spent in the routine, *excluding* any subsequent function calls
- Call trees: Which other functions were called by a given function, and how long did they take?

What can it tell you?

- Memory usage: Which routines use the most memory
- Parallel efficiency: How well is your parallel code using the hardware its given
- More specialised information:
 - Operations per clock-cycle
 - Memory copies
 - Etc...

Example: Python's cProfile

Wed Mar 8 11:20:37 2023 pystachio.prof

16889482 function calls (16717698 primitive calls) in 21.216 seconds

```
Ordered by: internal time
List reduced from 11007 to 5 due to restriction <5>
```

ncalls	tottime	percall	cumtime	percall	filename:lineno(function)
100	4.255	0.043	11.856	0.119	<pre>spots.py:247(refine_centres)</pre>
159421	2.581	0.000	2.581	0.000	algorithms.py:177(<lambda>)</lambda>
883441	1.928	0.000	1.928	0.000	<pre>{method 'reduce' of 'numpy.ufunc' objects}</pre>
62939	0.989	0.000	1.636	0.000	_methods.py:196(_var)
159421	0.859	0.000	5.013	0.000	algorithms.py:201(<lambda>)</lambda>

Example: Python's SnakeViz

Example: R Studio Profvis

Flame Graph Data			Options 🗸
Code	File	Memory (MB)	Time (ms)
▼ print	<expr></expr>	-32.7 38.3	1930
▼ print.ggplot		-32.7 38.3	1930
▼ grid.draw		-10.1 4.4	1460
grid.draw.gTree		-10.1 4.4	1460
▼ ggplot_gtable		-3.8 9.3	140
element_render		0 0.2	10
► facet_render		-0.1 0.6	20
► Map		-3.7 8.4	100
▼ ggplot_build		-18.8 22.1	310
▶ by_layer		0 2.6	10
train_ranges		-3.5 0	10
map_position		-7.1 15.1	230
train_position		-8.3 4.4	60
grid.newpage		0 2.4	20
▶ ggplot	<expr></expr>	0.0 4.7	60

Example: NVIDIA NSight

Further reference

- Python:
 - o cProfile: https://docs.python.org/3/library/profile.html
 - SnakeViz: https://jiffyclub.github.io/snakeviz/
- R:
 - ProfVis: <u>http://rstudio.github.io/profvis</u>
- C/C++/Fortran:
 - CPU performance: Intel VTune
 - GPU performance: NVIDIA NSights
- Other languages:
 - Have a look around, google is often the best place to start

Optimisation

Choosing the right algorithm

- Algorithm time:
 - O(f(N)) => prefactor * f(N)
- Logarithmic
 - < Polynomial
 - < Exponential
- Need to consider problem size

Problem size

Choosing the right algorithm

- Classic example: Sorting N elements
 - Bubble sort is rarely the right choice. $O(N^2)$
 - Quick sort is good for large lists. O(N log(N))
 - Insertion sort better for small lists. $O(N^2)$

Choosing the right data structures

- Does the data have some underlying structure?
- What kinds of operations are being performed?

Data structure	Insertion	Access	Searching
Array	O(N)	O(1)	O(N)
Linked List	O(1)	O(N)	O(N)
Dictionary	O(1)	n/a	O(1)
Binary tree	O(log (N))	n/a	O(log (N))

Making code more efficient

- Use optimised libraries
 - Someone else has already put the time in
 - Often written in low-level languages
 - E.g.
 - Tensorflow/PyTorch for AI
 - NumPy/Pandas for Python
 - Lapack for C/Fortran
 - Using your language's standard library

Making code more efficient

- Compile your code
 - Try Just-In-Time (JIT) compilation tools such as Numba (Python)
 - Rewrite computational kernels in a compiled language
 - Most languages have a C interface, although this can be difficult to use
 - Some languages provide tools for writing packages in Fortran, such as Python's F2Py
 - Use sparingly, it can make for very complicated codebases

Further reference

- Python:
 - Numba: https://numba.pydata.org/
 - F2Py: https://numpy.org/doc/stable/f2py/
- R:
 - <u>https://masuday.github.io/fortran_tutorial/r.html</u>
- C/Fortran:
 - Prof. Matt Probert's Intro. To HPC lecture course:https://www-users.york.ac.uk/~mijp1/teaching/4th_year_HPC
- Other languages:
 - Have a look around, google is often the best place to start

Parallelisation

Considerations for parallel programs

Amdahl's law:

- All code has a serial portion (S) and a parallelisable portion (P)
- Time = S + P / #cores
- Ignores network latency/bandwidth

High-level parallelism

- Run your program multiple times with different inputs
- Easiest form of parallelism!
- Considerations
 - Make sure your program runs are independent
 - Make sure your entire problem can be specified at run-time
 - Will all problems take the same/a similar amount of time?

Using parallel libraries

- Some libraries will already run in parallel
- E.g.
 - Tensorflow/PyTorch for Al/Machine Learning
 - Some LAPACK implementations provide threading/distributed parallelism
 - R's "parallel" package provides parallel versions of standard functions

Parallelising loops

- Research software often involves looping over large amounts of data
- Considerations:
 - Easiest when loop iterations are independent
 - Does each loop iteration take the same amount of time?
 - \circ Fewer iterations \rightarrow less scope for parallelism
 - \circ Quicker iterations \rightarrow parallel overheads may dominate the run time
- Examples:
 - C/C++/Fortran: OpenMP
 - Python: Multiprocessing module

Parallelising loops

def refine_centres(self, frame, params):
 image = frame.as_image()
 # Refine the centre of each spot independently
 for i_spot in range(self.num_spots):
 r = params.subarray_halfwidth
 N = 2 * r + 1

Other types of parallelism

- Task-level parallelism
 - Can many tasks be done simultaneously?
- Domain parallelism:
 - Splitting up your problem across multiple processes
- Hardware acceleration:
 - GPUs
 - FPGAs
 - Etc.

Summary

Summary

- Optimising & Parallelising your programs can allow you to get work done faster and tackle larger problem sizes
- Parallelising your program can allow you to use larger computers/clusters
- Profiling your program will tell you where to focus your time when optimising
- Choosing the right algorithms can make huge differences to runtime
- Using existing libraries/compiled languages can often provide better performance than interpreted ones