
Write faster code
An introduction to profiling, optimisation and parallelisation



Motivation



Running software takes time

● How long should a program take to run?

○ Want an immediate answer? A few seconds

○ Coffee Break? A few minutes

○ Lunch Break? An hour

○ Overnight? Several hours

○ Etc.



● How often does it need to be run?

○ Want an immediate answer? Many times a day

○ Coffee Break? A few times a day

○ Lunch Break? Once a day

○ Overnight? Once a day

○ Etc.

Running software takes time



Not necessarily for quicker results

● Higher throughput

● Larger problem sizes

● More accurate results

● Can experiment with problem inputs



So what can we do?



The plan…



When should we optimise?

● At the design stage

● At the end of the development stage

● When you need to!

“Premature optimisation is the root of all evil”

- Donald Knuth



What should we optimise?

● Profiling: Identify performance hotspots

● Look for low-hanging fruit

● Consider a range of relevant problems

○ Different problem sizes

○ Different problem types

○ Running on hardware



● Inefficient implementations

○ Algorithm/data structure choice

○ Language choice

○ Redundant computation

○ Can come at the cost of readability

How should we optimise?



● Parallelisation

○ Most computers these days have several computing cores

○ Allows scaling to larger machines/clusters

● Using external libraries

○ May already be optimised

○ Sometimes even parallelised

How should we optimise?



Profiling



What is profiling?

● Identify regions of the code that are taking significant time

● Usually function-level, sometimes line-level

● Can be graphical or command-line

● Profiling tools available for many languages



What can it tell you?

● Number of calls: How many times each function was called

● Cumulative time: Time spent in the routine, including any subsequent function 
calls

● Exclusive time: Time spent in the routine, excluding any subsequent function 
calls

● Call trees: Which other functions were called by a given function, and how 
long did they take? 



● Memory usage: Which routines use the most memory

● Parallel efficiency: How well is your parallel code using the hardware its given

● More specialised information:

○ Operations per clock-cycle

○ Memory copies

○  Etc…

What can it tell you?



Example: Python’s cProfile



Example: Python’s SnakeViz



Example: R Studio Profvis



Example: NVIDIA NSight



● Python:

○ cProfile: https://docs.python.org/3/library/profile.html

○ SnakeViz: https://jiffyclub.github.io/snakeviz/

● R:
○ ProfVis: http://rstudio.github.io/profvis

● C/C++/Fortran:

○ CPU performance: Intel VTune

○ GPU performance: NVIDIA NSights

● Other languages:

○ Have a look around, google is often the best place to start

Further reference

http://rstudio.github.io/profvis


Optimisation



Choosing the right algorithm

● Algorithm time:

○ O(f(N)) => prefactor * f(N)

●    Logarithmic
< Polynomial
< Exponential

● Need to consider problem size



Choosing the right algorithm

● Classic example: Sorting N elements

○ Bubble sort is rarely the right choice. O(N2)

○ Quick sort is good for large lists. O(N log(N))

○ Insertion sort better for small lists. O(N2)



Choosing the right data structures

● Does the data have some underlying structure?

● What kinds of operations are being performed?

Data structure Insertion Access Searching

Array O(N) O(1) O(N)

Linked List O(1) O(N) O(N)

Dictionary O(1) n/a O(1)

Binary tree O(log (N)) n/a O(log (N))



Making code more efficient

● Use optimised libraries

○ Someone else has already put the time in

○ Often written in low-level languages

○ E.g.

■ Tensorflow/PyTorch for AI

■ NumPy/Pandas for Python

■ Lapack for C/Fortran

■ Using your language’s standard library



Making code more efficient

● Compile your code

○ Try Just-In-Time (JIT) compilation tools such as Numba (Python)

○ Rewrite computational kernels in a compiled language

■ Most languages have a C interface, although this can be difficult to use

■ Some languages provide tools for writing packages in Fortran, such as Python’s F2Py

■ Use sparingly, it can make for very complicated codebases



● Python:
○ Numba: https://numba.pydata.org/

○ F2Py: https://numpy.org/doc/stable/f2py/

● R:
○ https://masuday.github.io/fortran_tutorial/r.html

● C/Fortran:
○ Prof. Matt Probert’s Intro. To HPC lecture 

course:https://www-users.york.ac.uk/~mijp1/teaching/4th_year_HPC 

● Other languages:
○ Have a look around, google is often the best place to start

Further reference

https://masuday.github.io/fortran_tutorial/r.html


Parallelisation



Considerations for parallel programs

Amdahl's law:

● All code has a serial 
portion (S) and a 
parallelisable portion (P)

● Time = S + P / #cores

● Ignores network 
latency/bandwidth



High-level parallelism

● Run your program multiple times with different inputs

● Easiest form of parallelism!

● Considerations

○ Make sure your program runs are independent

○ Make sure your entire problem can be specified at run-time

○ Will all problems take the same/a similar amount of time? 



Using parallel libraries

● Some libraries will already run in parallel

● E.g.

○ Tensorflow/PyTorch for AI/Machine Learning

○ Some LAPACK implementations provide threading/distributed parallelism 

○ R’s “parallel” package provides parallel versions of standard functions



Parallelising loops

● Research software often involves looping over large amounts of data

● Considerations:

○ Easiest when loop iterations are independent

○ Does each loop iteration take the same amount of time?

○ Fewer iterations → less scope for parallelism

○ Quicker iterations → parallel overheads may dominate the run time 

● Examples:

○ C/C++/Fortran: OpenMP

○ Python: Multiprocessing module



Parallelising loops



Other types of parallelism

● Task-level parallelism

○ Can many tasks be done simultaneously?

● Domain parallelism:

○ Splitting up your problem across multiple processes

● Hardware acceleration:
○ GPUs
○ FPGAs
○ Etc. 



Summary



Summary

● Optimising & Parallelising your programs can allow you to get work done 
faster and tackle larger problem sizes

● Parallelising your program can allow you to use larger computers/clusters

● Profiling your program will tell you where to focus your time when optimising

● Choosing the right algorithms can make huge differences to runtime

● Using existing libraries/compiled languages can often provide better 
performance than interpreted ones

“


