Write faster code

An introduction to profiling, optimisation and parallelisation

Motivation

Running software takes time

e How long should a program take to run?

o Want an immediate answer? A few seconds
o Coffee Break? A few minutes

o Lunch Break? An hour

o Qvernight? Several hours

o Etc.

Running software takes time

e How often does it need to be run?

o Want an immediate answer? Many times a day
o Coffee Break? A few times a day

o Lunch Break? Once a day

o Overnight? Once a day

o Etc.

Not necessarily for quicker results

e Higher throughput
e Larger problem sizes
e More accurate results

e Can experiment with problem inputs

So what can we do?

The plan...

When should we optimise?

e At the design stage

e At the end of the development stage

e \When you need to!

“Premature optimisation is the root of all evil”

- Donald Knuth

What should we optimise?

e Profiling: Identify performance hotspots

e Look for low-hanging fruit

e Consider a range of relevant problems
o Different problem sizes
o Different problem types

o Running on hardware

How should we optimise?

e Inefficient implementations

o Algorithm/data structure choice
o Language choice
o Redundant computation

o Can come at the cost of readability

How should we optimise?

e Parallelisation
o Most computers these days have several computing cores
o Allows scaling to larger machines/clusters

e Using external libraries

o May already be optimised

o Sometimes even parallelised

Profiling

What is profiling?

e Identify regions of the code that are taking significant time
e Usually function-level, sometimes line-level
e Can be graphical or command-line

e Profiling tools available for many languages

What can it tell you?

e Number of calls: How many times each function was called

e Cumulative time: Time spent in the routine, including any subsequent function
calls

e Exclusive time: Time spent in the routine, excluding any subsequent function
calls

e Call trees: Which other functions were called by a given function, and how
long did they take?

What can it tell you?

e Memory usage: Which routines use the most memory
e Parallel efficiency: How well is your parallel code using the hardware its given

e More specialised information:
o Operations per clock-cycle
o Memory copies

o Etc...

Example: Python's cProfile

Wed Mar 8 11:20:37 2023 pystachio.prof
16889482 function calls (16717698 primitive calls) in 21.216 seconds

Ordered by: internal time
List reduced from 11007 to 5 due to restriction <5>

ncalls tottime percall cumtime percall filename:lineno(function)
100 4.255 0.043 11.856 0.119 spots.py:247(refine_centres)
159421 2.581 0.000 2.581 0.000 algorithms.py:177(<lambda>)
883441 1.928 0.000 1.928 0.000 {method 'reduce' of 'numpy.ufunc' objects}
62939 0.989 0.000 1.636 0.000 methods.py:196(var)
159421 0.859 0.000 5.013 0.000 algorithms.py:201(<lambda>)

Example: Python's SnakeViz

Example: R Studio Profvis

Flame Graph Data

Code
v print
v print.ggplot
v grid.draw
» grid.draw.gTree
v ggplot_gtable
» element_render
» facet_render
» Map
v ggplot_build
» by layer
» train_ranges
» map_position
» train_position
» grid.newpage
» ggplot

Sample Interval: 10ms

File
<expr>

<expr>

Memory (MB)
-32.7 | 383
-32.7 I 383
-10.1] 4.4
-10.1] 4.4
-3.8 | 93
o] |0.2
-0.1 | 0.6
-3.7] 84
-18.8 [22.1
o] 26
35| o
-71 | 151
-83 || 44
o] 24
00 | 47

Options ~
Time (ms)
1930 B
1930 B
1460 B
1460 B

140 |
10
20

100 |

310 |
10
10

230 |
60 |
20
60 |

1990ms

Example: NVIDIA NSight

~ [v| [13680] castep_fast v

e wait: al... | | Wait: algorF90:5226 |
CUDA API] | [| | [cuStrea...’.‘cuE...}]cuStrea...

Profiler overhead

9 threads hidden... — 4
~ CUDA HW (0000:01:00.0 -

» [All Streams]

|
"Memcp

» 87.6% Stream 13 I

» 12.4% Default stream 7

» <0.1% Stream 14

Further reference

e Python:
o cProfile: https://docs.python.org/3/library/profile.html
o SnakeViz: https://jiffyclub.github.io/snakeviz/

e R:
o ProfVis: http://rstudio.github.io/profvis

e (C/C++/Fortran:

o CPU performance: Intel VTune

o GPU performance: NVIDIA NSights

e Other languages:

o Have alook around, google is often the best place to start

http://rstudio.github.io/profvis

Optimisation

Choosing the right algorithm

e Algorithm time:

[
,r
o O(f(N)) => prefactor * f(N) [/
a‘l
s Logarithmic / /
< Polynomial ‘\ Logarithmic
. & Linear
< Exponential £ Quadratic

Exponential

e Need to consider problem size

Problem size

Choosing the right algorithm

e Classic example: Sorting N elements
o Bubble sort is rarely the right choice. O(N?)
o Quick sort is good for large lists. O(N log(N))

o Insertion sort better for small lists. O(N?)

Choosing the right data structures

e Does the data have some underlying structure?

e \What kinds of operations are being performed?

Data structure
Array

Linked List
Dictionary

Binary tree

Insertion

Access

Searching
O(N)
O(N)
O(1)
O(log (N))

Making code more efficient

e Use optimised libraries

o Someone else has already put the time in

o Often written in low-level languages

o E.g.

Tensorflow/PyTorch for Al
NumPy/Pandas for Python
Lapack for C/Fortran

Using your language’s standard library

Making code more efficient

e Compile your code
o Try Just-In-Time (JIT) compilation tools such as Numba (Python)
o Rewrite computational kernels in a compiled language
m Most languages have a C interface, although this can be difficult to use
m Some languages provide tools for writing packages in Fortran, such as Python’s F2Py

m Use sparingly, it can make for very complicated codebases

Further reference

e Python:

o Numba: https://numba.pydata.org/
o F2Py: https://numpy.org/doc/stable/f2py/

o R:
o https://masuday.qithub.io/fortran_tutorial/r.html

e C/Fortran:

o Prof. Matt Probert’s Intro. To HPC lecture
course:https://www-users.york.ac.uk/~mijp1/teaching/4th_year HPC

e Other languages:

o Have alook around, google is often the best place to start

https://masuday.github.io/fortran_tutorial/r.html

Parallelisation

Considerations for parallel programs

Amdahl's law:

e All code has a serial
portion (S) and a
parallelisable portion (P)

speedup

e Time=S+ P/#cores

e Ignores network
latency/bandwidth

50

45
40 t
35 t

I

30 +
29 I
20 |

o

—— Ideal(n)
.......... Amdahl(n)
............ Real(n)
5 10 15 20 25 30 35 40 45 50

number of processors (n)

High-level parallelism

e Run your program multiple times with different inputs
e Easiest form of parallelism!

e Considerations
o Make sure your program runs are independent

o Make sure your entire problem can be specified at run-time

o Will all problems take the same/a similar amount of time?

Using parallel libraries

e Some libraries will already run in parallel

e E.Q.
o Tensorflow/PyTorch for Al/Machine Learning
o Some LAPACK implementations provide threading/distributed parallelism

] 1

o R’s “parallel” package provides parallel versions of standard functions

Parallelising loops

e Research software often involves looping over large amounts of data

e Considerations:

o Easiest when loop iterations are independent

o Does each loop iteration take the same amount of time?

o Fewer iterations — less scope for parallelism

o Quicker iterations — parallel overheads may dominate the run time
e Examples:

o C/C++/Fortran: OpenMP

o Python: Multiprocessing module

Parallelising loops

refine _centres(self, frame, params):
image = frame.as_1image()

_spot range(self.num_spots):

1
r = params.subarray_halfwidth
\ i

Other types of parallelism

e Task-level parallelism
o Can many tasks be done simultaneously?
e Domain parallelism:

o Splitting up your problem across multiple processes

e Hardware acceleration:
o GPUs
o FPGAs
o FEtc.

Summary

Summary

111

Optimising & Parallelising your programs can allow you to get work done
faster and tackle larger problem sizes

Parallelising your program can allow you to use larger computers/clusters
Profiling your program will tell you where to focus your time when optimising
Choosing the right algorithms can make huge differences to runtime

Using existing libraries/compiled languages can often provide better
performance than interpreted ones

