Write faster code

An introduction to profiling, optimisation and parallelisation



Motivation



Running software takes time

e How long should a program take to run?

o Want an immediate answer? A few seconds
o Coffee Break? A few minutes

o Lunch Break? An hour

o  Qvernight? Several hours

o Etc.



Running software takes time

e How often does it need to be run?

o Want an immediate answer? Many times a day
o Coffee Break? A few times a day

o Lunch Break? Once a day

o  Overnight? Once a day

o Etc.



Not necessarily for quicker results

e Higher throughput
e Larger problem sizes
e More accurate results

e Can experiment with problem inputs



So what can we do?



The plan...



When should we optimise?

e At the design stage

e At the end of the development stage

e \When you need to!

“Premature optimisation is the root of all evil”

- Donald Knuth



What should we optimise?

e Profiling: Identify performance hotspots

e Look for low-hanging fruit

e Consider a range of relevant problems
o Different problem sizes
o Different problem types

o Running on hardware



How should we optimise?

e Inefficient implementations

o Algorithm/data structure choice
o Language choice
o Redundant computation

o Can come at the cost of readability



How should we optimise?

e Parallelisation
o Most computers these days have several computing cores
o Allows scaling to larger machines/clusters

e Using external libraries

o May already be optimised

o Sometimes even parallelised



Profiling



What is profiling?

e Identify regions of the code that are taking significant time
e Usually function-level, sometimes line-level
e Can be graphical or command-line

e Profiling tools available for many languages



What can it tell you?

e Number of calls: How many times each function was called

e Cumulative time: Time spent in the routine, including any subsequent function
calls

e Exclusive time: Time spent in the routine, excluding any subsequent function
calls

e Call trees: Which other functions were called by a given function, and how
long did they take?



What can it tell you?

e Memory usage: Which routines use the most memory
e Parallel efficiency: How well is your parallel code using the hardware its given

e More specialised information:
o Operations per clock-cycle
o Memory copies

o Etc...



Example: Python's cProfile

Wed Mar 8 11:20:37 2023 pystachio.prof
16889482 function calls (16717698 primitive calls) in 21.216 seconds

Ordered by: internal time
List reduced from 11007 to 5 due to restriction <5>

ncalls tottime percall cumtime percall filename:lineno(function)
100 4.255 0.043 11.856 0.119 spots.py:247(refine_centres)
159421 2.581 0.000 2.581 0.000 algorithms.py:177(<lambda>)
883441 1.928 0.000 1.928 0.000 {method 'reduce' of 'numpy.ufunc' objects}
62939  0.989  0.000 1.636  0.000 methods.py:196( var)
159421 0.859 0.000 5.013 0.000 algorithms.py:201(<lambda>)




Example: Python's SnakeViz




Example: R Studio Profvis

Flame Graph Data
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Example: NVIDIA NSight

~ [v| [13680] castep_fast v

e wait: al... | | Wait: algorF90:5226 |
CUDA API ] | [ | | [cuStrea...’.‘cuE...} ]cuStrea...
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» <0.1% Stream 14



Further reference

e Python:
o  cProfile: https://docs.python.org/3/library/profile.html
o  SnakeViz: https://jiffyclub.github.io/snakeviz/

e R:
o  ProfVis: http://rstudio.github.io/profvis

e (C/C++/Fortran:

o  CPU performance: Intel VTune

o  GPU performance: NVIDIA NSights

e Other languages:

o Have alook around, google is often the best place to start


http://rstudio.github.io/profvis

Optimisation



Choosing the right algorithm

e Algorithm time:
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e Need to consider problem size

Problem size



Choosing the right algorithm

e Classic example: Sorting N elements
o Bubble sort is rarely the right choice. O(N?)
o Quick sort is good for large lists. O(N log(N))

o Insertion sort better for small lists. O(N?)



Choosing the right data structures

e Does the data have some underlying structure?

e \What kinds of operations are being performed?

Data structure
Array

Linked List
Dictionary

Binary tree

Insertion

Access

Searching
O(N)
O(N)
O(1)
O(log (N))



Making code more efficient

e Use optimised libraries

o Someone else has already put the time in

o  Often written in low-level languages

o E.g.

Tensorflow/PyTorch for Al
NumPy/Pandas for Python
Lapack for C/Fortran

Using your language’s standard library



Making code more efficient

e Compile your code
o  Try Just-In-Time (JIT) compilation tools such as Numba (Python)
o Rewrite computational kernels in a compiled language
m Most languages have a C interface, although this can be difficult to use
m Some languages provide tools for writing packages in Fortran, such as Python’s F2Py

m Use sparingly, it can make for very complicated codebases



Further reference

e Python:

o Numba: https://numba.pydata.org/
o  F2Py: https://numpy.org/doc/stable/f2py/

o R:
o https://masuday.qithub.io/fortran_tutorial/r.html

e C/Fortran:

o  Prof. Matt Probert’s Intro. To HPC lecture
course:https://www-users.york.ac.uk/~mijp1/teaching/4th_year HPC

e Other languages:

o Have alook around, google is often the best place to start


https://masuday.github.io/fortran_tutorial/r.html

Parallelisation



Considerations for parallel programs

Amdahl's law:

e All code has a serial
portion (S) and a
parallelisable portion (P)

speedup

e Time=S+ P/#cores

e Ignores network
latency/bandwidth
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High-level parallelism

e Run your program multiple times with different inputs
e Easiest form of parallelism!

e Considerations
o Make sure your program runs are independent

o Make sure your entire problem can be specified at run-time

o  Will all problems take the same/a similar amount of time?



Using parallel libraries

e Some libraries will already run in parallel

e E.Q.
o Tensorflow/PyTorch for Al/Machine Learning
o Some LAPACK implementations provide threading/distributed parallelism

] 1

o R’s “parallel” package provides parallel versions of standard functions



Parallelising loops

e Research software often involves looping over large amounts of data

e Considerations:

o Easiest when loop iterations are independent

o Does each loop iteration take the same amount of time?

o Fewer iterations — less scope for parallelism

o  Quicker iterations — parallel overheads may dominate the run time
e Examples:

o C/C++/Fortran: OpenMP

o  Python: Multiprocessing module



Parallelising loops

refine _centres(self, frame, params):
image = frame.as_1image()

_spot range(self.num_spots):

1
r = params.subarray_halfwidth
\ i




Other types of parallelism

e Task-level parallelism
o Can many tasks be done simultaneously?
e Domain parallelism:

o  Splitting up your problem across multiple processes

e Hardware acceleration:
o GPUs
o FPGAs
o FEtc.



Summary



Summary

111

Optimising & Parallelising your programs can allow you to get work done
faster and tackle larger problem sizes

Parallelising your program can allow you to use larger computers/clusters
Profiling your program will tell you where to focus your time when optimising
Choosing the right algorithms can make huge differences to runtime

Using existing libraries/compiled languages can often provide better
performance than interpreted ones



