
Introduction to Version Control with Git 
and GitHub

Working Alone and Working Collaboratively



Goals for the session:
● Basic understanding of what version control, git, and GitHub are

● Knowledge of a few important git-related terms

● The ability to create a repository hosted on GitHub

● The ability to make commits in a repository

● The ability to clone a repository

● The ability to revert to a previous commit in a repository

● The ability to work on branches in a Git repository

● The ability to create and resolve a Pull Request on GitHub



Part 1: Introductory Information



What is version control?
● Any means by which you track changes to something:

We’ve all done it!

Is this effective version control?



What is Version Control?
● Structured way of keeping track of changes to files

● Implemented differently in different ‘version control systems’ 

(VCS)

● Typically share the concept of a history, the changes which 

make up the history, and the ability to move freely back and 

forth within the history

● The most popular VCS is git, which we will be focusing on today



Why Version Control?
● Keeps a labelled history of all changes made to a project, and 

lets you rewind them if something goes wrong

● Lets you experiment with changes to a project whilst keeping 

stable versions of the project untouched

● Provides lots of convenience features for working with other 

people on a project

● Can act as a backup of your projects, especially when using a 

hosted service like GitHub



What is git?
● A specific version control system, created 

by the guy who created the Linux kernel 

(the myth goes that he named it by his 

personal reputation)

● A ‘distributed’ version control system - 

many people can have copies of the stuff 

under version control and they don’t need 

to be in sync

● One of the most important programming 

tools you can benefit from becoming 

comfortable with



What is GitHub?
● Importantly, a website for hosting, 

organising, and collaborating on projects 

that are under version control

● Provides a consistent way to store and 

share version-controlled code (and other 

projects)

● Can act as a portfolio of sorts

● Has a whole host of other features (project 

management, continuous integration 

tools…)

● See the WACL GitHub organisation for an 

example

https://github.com/wacl-york


Git Glossary: Basics
● Repository: the collection of files that you want to version control

● History: the timeline of changes that have been made to your files

● Clone: the act of copying a repository

● Commit: a packaged and labelled change to some files in your 

repository

● Push / pull: the act of synchronising your history with another 

copy of your repository



Part 2: Working Alone



Creating Your First Repository - GUI

Click this!



Creating Your First Repository - CLI

$ mkdir my_first_repository

$ cd my_first_repository

$ git init

$ git config --global init.defaultBranch main

(It is not important to understand this first command - you will only ever need to run it once, and if you’ve never used git before you will likely never notice what it has changed)

Initialized empty Git repository in 
/Users/klcm500/practical_version_control/my_first_repository/.git/

On success:



Creating Your First Repository
● README.md: A file describing the project you have under 

version control. Typically written in Markdown and is nicely 

rendered on the GitHub page for your repository

● .gitignore: A file describing the things in your repository that 

you don’t want to track

● License: a document describing the rights and permissions you 

grant to others who may wish to use your software

1. .gitignore file generator: https://www.toptal.com/developers/gitignore/
2. Software licence picker: https://choosealicense.com/ 

https://daringfireball.net/projects/markdown/
https://www.toptal.com/developers/gitignore/
https://choosealicense.com/


Creating Your First Repository - GUI

Now click this!



Creating Your First Repository - CLI

$ git remote add origin https://github.com/YOUR_GITHUB_USERNAME/my_first_repository

^ Creates a reference in your copy of the repository to an ‘origin’ repository on GitHub

● Navigate to https://github.com/your-username
● Select the ‘Repositories’ tab
● Select the green ‘New’ icon

Click this!

https://github.com/your-username


Creating Your First Repository
● Description: a one-line description of the repository contents

● Privacy: the visibility of your repository - just you or anybody?

● Organization: the ownership of your repository - you or some 

organization (e.g. university-of-york) that you are a member of?



Making Your First Commit - GUI

● Add a file to the directory 

that you used when creating 

the repository (make sure it’s 

not an empty file!)

● Take a look at what happens 

in the GitHub desktop 

window



Making Your First Commit - CLI

● First, run git status and note the output

● Then, create a file in the repository using your favourite text 

editor / development tool (README.md is a good idea!)
○ If you’re stuck for something to put in there, how about the name of your 

favourite sandwich filling?

● Then, run git status again and note the different output

● Git is aware that you have added a file



Making Your First Commit - GUI

● Add a commit label and a commit message to the 
box

● A nice way to think about commit labels is that they 
should concisely complete the following sentence:

“This commit will…” e.g.

“This commit will create hello_world.py”

● The commit message can contain as little or as much 
as appropriate to help you and others understand 
what the change consists of (be kind to Future You!)

● How frequently should you commit? What should 
be in a commit?



Making Your First Commit - CLI
● Need to set up your name and email address

● git config --global user.name “YOUR NAME”
● git config --global user.email “your@email.address”
● This will make your name and email address appear correctly on any 

commits you make to repositories

● Need to link your local repository with the repository you created on 

GitHub:

$ git remote add origin https://github.com/YOUR_GITHUB_USERNAME/my_first_repository

^ Creates a reference in your copy of the repository to an ‘origin’ repository on GitHub



Making Your First Commit - CLI

$ git add FILENAME

^ Tells git that you’d like to add this file to the commit

$ git add -A

^ Tells git that you’d like to add all changed files to the commit

OR

THEN

$ git commit

^ Opens up a text editor for you to add a label and message to the commit



Making Your First Commit - GUI

● Switch over to the “History” 

tab

● You should be able to see 

your recent commit and its 

details

● Right now, this exists only on 

your computer



Making Your First Commit - CLI

● Run git log to see the repository history

● You should see a single commit

● It will have your name and address in the ‘Author’ field

● It will have the date and time of creation in the ‘Date’ field

● Your commit label and message will be present

● This is how you communicate high-level changes in the 

repository to other people / yourself!



Pushing Your First Commit - GUI

Click here now!



Pushing Your First Commit - CLI

$ git push --set-upstream origin main

^ Only need to do it this way the first time we push to a new branch. --set-upstream links your branch main with a 
branch main in GitHub. Normally, we just need:

$ git push



Pushing Your First Commit
● Your repository is now on GitHub:

https://github.com/your-username/your-repo-name

● This means it is:
○ Backed up!

○ Easily shareable!

○ Easily accessible from other machines!

● Now delete the repository from your 

computer using the file explorer / 

finder / rm command

G
uess w

hat w
e’re going to press?



Cloning Your Repository - GUI

● Getting your code and all of its 

history back is as easy as a few 

button clicks

● Once it has finished cloning, 

we should be back to where 

we were before deleting

● You can clone other GitHub 

users’ public repositories too!

Click this

Then this



Cloning Your Repository - CLI

$ git clone https://github.com/your-username/your-repo-name

● If the repository is private, you will need to set up a personal access token before you can clone the 
repository

● You can also set up passwordless authentication using SSH keys, see the GitHub documentation for more 
details

https://docs.github.com/en/authentication/keeping-your-account-and-data-secure/creating-a-personal-access-token
https://docs.github.com/en/authentication/connecting-to-github-with-ssh/adding-a-new-ssh-key-to-your-github-account


Making More Changes
● Go ahead and make some more commits to your repository:

○ Add a README (everybody do this and have a look what happens on GitHub!) if you haven’t already

○ Add files

○ Add contents to files that are already there

○ Delete things

● Make sure to push commits when you’ve made them!

● Think and chat about the way you like to work and how that might map onto 

version control history:
○ Do you work in big chunks and then sign off for the day?

○ Do you often switch tasks and have trouble figuring out where you were when you left off?

○ Do you program first and plan later? Or the other way around?!

● Ask any questions you’d like!



Commit Hashes
● Each commit in the history has a unique 

identifier associated with it, the commit 

hash

● This is a long string that looks something 

like this:

0efd1cb9e37318404b76de7c99e2
6fbef16ef3a3

● You only ever need the first 7 characters 

of the ID!

● It is used in any Git operation that needs 

to refer to a specific commit

It’s here!

It’s here!



Reverting A Commit - GUI
● GitHub desktop can’t revert 

many commits at once

● We can easily revert commits 

one-by-one!

● Switch to the “History” tab and 

right-click the latest commit 

Click this



Reverting A Commit - GUI
● We now have a new commit that reverts 

the previously made changes

● We can play around with this and see if it 

works

● If we are happy with the reversion, we can 

push to reflect the reversion on GitHub

● With GitHub Desktop, we need to do this 

for each commit we want to revert, in 

reverse order

● With the command line, reverting multiple 

commits at once is possible - not covering 

that today



Reverting A Commit - CLI

● First need to identify the ID of the commit we want to revert - the last commit we made. Take 
a look at git log output:

commit f7cfe07b8d7691241ebca90c19b187da142350c1 (HEAD -> main)

We need the first 7 characters of this ID string!

● Then we run:

$ git revert f7cfe07

Since we are making a new commit which reverts the previous commit, we are prompted for a label and a 
message. This is a good opportunity to document why we are reverting a commit

● If we are happy with the reversion, we can push the changes as with any other commit



Summary
● Create a repository, or clone an existing repository

● Make changes in the repository and commit them, adding a 

label and a message

● Push the changes to GitHub to synchronize

● Revert commits if you find you have broken something!



Part 3: Working Collaboratively



Branches - Overview

A F

ED

CB

BRANCH MERGE

● Branching creates a parallel stream of 
changes within the repository

● Changes on one branch aren’t reflected 
on another branch, unless you want 
them to be!



Branches - Overview

● Branches are great for working on new things once you’ve got 

something working - make changes on a branch knowing that 

they won’t affect changes on the ‘main’ branch

● Branches are great for working together - multiple people can 

work on different changes without interfering with each other

● At some point you will want to bring all of these changes back 

into one place - this is called a ‘merge’ 



Git Glossary: Branching
● Branch: a set of changes in your repository, being tracked in 

parallel to your ‘main’ branch

● Merge: the act of bringing changes from one branch onto another

● Conflict: a situation where competing changes have been made to 

some part of your repository

● Pull Request: a way of reviewing, labelling, and discussing a merge 

before it takes place



Creating A Branch - GUI

Click this 
and give 
the branch 
a name!



Creating A Branch - CLI

$ git branch my_first_branch

^ Create a new branch in your local repository called ‘my_first_branch’

$ git switch my_first_branch

^ Switch to the newly created branch



Publishing Branches

● The branch currently only resides in our local repository

● We can publish the branch to GitHub in the same way we 

published the ‘main’ branch at the start of the tutorial:
○ GUI users can click ‘Publish branch’

○ CLI users can run git push –-set-upstream origin BRANCH_NAME 
where BRANCH_NAME is the name you chose for the new branch

● Now other people could see your branches when they clone 

your repository



Working On Branches

● Go ahead and make at least one new commit to your branch

● Make sure to add a label and commit message to the branch

● Once you have made at least one new commit, switch back to 

your main branch. What do you notice?

● Have a look in your file explorer / finder / directory listing in 

your terminal in between switching branches



Working On Branches
● Git is keeping track of changes to these branches separately

● Files that only exist on one branch will not be visible to you if 

you have switched away from that branch

● If we now want our main branch to reflect changes made on 

our new branch, we need to merge the new branch onto the 

main branch

● Before we do this, we can review the changes using a Pull 

Request



Creating A Pull Request
● Navigate to https://github.com/your-username/your-repo-name

● Select the ‘Pull requests’ tab

● Select ‘New pull request’

● We need to select two branches to be compared for a merge - we want to 

set ‘main’ as our ‘base’ branch (the branch onto which changes will be 

merged) and our new branch as the ‘compare’ branch, the branch from 

which changes will be taken

● GitHub will show us some information about the changes that we are 

looking to merge

● With these branches correctly selected, select ‘Create pull request’

https://github.com/your-username/your-repo-name


Creating A Pull Request
● Now we can add a title and formatted 

description of the changes to make it easy 
for us and others to understand the changes 
to be merged

● PRs are a good opportunity for you to 
describe the changes to yourself, review 
them, and make sure you are happy with 
them, before merging them with your main 
branch

● If there are multiple people working on your 
repository this is a great time for them to 
have a look at your changes and add any 
comments they might have!

● Let’s add a nice description and click ‘Create 
pull request’, then see if we can get 
somebody else to review your changes



Granting Access To Your Repo
● Navigate to your repository ‘Settings’ (the gear icon on the 

repository web page)

● Select ‘Collaborators’ from the menu

● Partner up with the person sat next to you and enter their 

GitHub username into the search box, selecting them from the 

results

● Check your email for an invitation to collaborate on the 

repository and follow the instructions to become a collaborator



Experiment With Pull Requests
● Try leaving some comments on each other’s Pull Requests

● Try adding an assignee to your Pull Request:
○ This is an indicator that somebody is responsible for resolving the Pull Request - 

requesting more changes, rejecting it, accepting it etc.

● Try adding some labels to your Pull Request:
○ These let you filter Pull Requests based on the labels associated with them



Merging A Pull Request

● Once you are done experimenting with your Pull Requests, 

select ‘Merge pull request’:
○ This takes the changes from the ‘compare’ branch - the branch you created 

earlier - and merges them onto the ‘base’ branch - the main branch of your 

repository

○ In this case, the changes should be able to be merged automatically

○ After merging, you can select ‘Delete branch’ - we are finished merging the 

changes and in this case don’t need to keep it!

● We now need to make sure our local repositories have kept up 

with the changes that have happened on GitHub…



Keeping Repositories Up To Date - GUI
● We have made some changes in GitHub 

that we need to reflect in our local 

repository!

● In the GitHub Desktop app, we can use the 

‘Fetch origin’ button to get the latest 

changes from GitHub

● If we switch back to the main branch after 

doing so, we will see a Merge commit in the 

history

● We can also delete our branch that has 

been merged, since we are finished with it
Click this!



Keeping Repositories Up To Date - CLI

$ git switch main

^ Switch back to our main branch, if we aren’t already on it

$ git pull

^ Get the changes from GitHub and reflect them in our local repository

$ git branch -d my_branch

^ Delete the local copy of ‘my_branch’, as we have finished with it



Introducing Conflicts
● Conflicts happen when something in a file has been changed in 

more than one place

● Git doesn’t know what you want the file to contain, so you have 

to help it!

● One way this can happen is when multiple people work on e.g. 

the same bit of code on their own branches, and you want to 

merge those branches back together



Introducing Conflicts
● With the person next to you, decide on one of your repositories 

to use for this exercise (you can work alone if you prefer)

● Make sure both of you have a copy of the chosen repository (go 

back and look up how to clone a repository if you can’t 

remember how!)

● Each of you create a new branch from the main branch

● Both of you make changes to same part of a file in the 

repository, commit the changes, and push them



Introducing Conflicts
● We now have two branches to merge onto the main branch!

● Set up a Pull Request for each of these branches

● You should be able to merge the Pull Request for one of these 

branches without conflicts

● After merging the first one, the second Pull Request should 

now tell you that there are conflicts to be resolved

● We have to tell Git what we want the conflicting file to look like 

in order to continue



Resolving Conflicts

● If you select ‘Resolve conflicts’ on the Pull Request, GitHub will show you something like the above
● This is Git’s conflict syntax - anything above the line of ‘=’ characters is what that section of the file looks like in 

the conflicting branch
● Anything below the line of ‘=’ characters is what that section of the file looks like on the ‘base’ branch
● We can choose how we want to resolve the conflict by removing everything we don’t want to keep, including the 

Git conflict markers
● Once you are done, select ‘Mark as resolved’ - you can now ‘Commit merge’ to resolve the conflicts and continue



Summary
● Create a branch in a repository, allowing separate streams of changes to be 

tracked

● Switch between branches in a repository if you need to work on multiple 

streams of changes simultaneously

● Create pull requests when you want to merge changes from a branch into 

another branch

● Merge a pull request when you and collaborators are happy with the changes

● Pull changes from GitHub to synchronise your local repository

● Resolve conflicts when there are overlapping changes to some part of your 

repository



Additional Resources
● https://swcarpentry.github.io/git-novice/

● https://chryswoods.com/introducing_git/

● https://docs.github.com/en/get-started/quickstart/hello-world

https://swcarpentry.github.io/git-novice/
https://chryswoods.com/introducing_git/
https://docs.github.com/en/get-started/quickstart/hello-world

