Motivation

Thinking in
Parallel

Finding parallelism
Pattern 1: SPMD

Y , Pattern 2: Loop Parallelism
Finding parallelism, some parallel

patterns, implementing these on
Viking

ol gm B8 =

Conclusions

’—f'!fgg UNIVERSITY
GG

e Units of work are completed at the same time as each other

Motivation - what is it?

® Requires hardware support
e Contrast with sequentialism - units of work are completed one

at a time, one after the other
e We can find and exploit potential parallelism where we
typically think sequentially

=) UNIVERSITY

> A~ W

which we are carrying out computation! 2

Motivation - why bother?

® Parallelism is baked in to the hardware on

® From consumer-grade hardware to national /’
supercomputer class systems, parallel
architectures are the standard ¢

e If you're walking around with one of these &
pens in your pocket, you may as well make
use of the black and red ink /

Motivation - why bother?

Liverpool

e

F5-
SO

& SunDay
PR

UNIVERSITY

o York

Solving problems at scale - much more
than a phrase du jour of enterprise IT!
As problem sizes increase, so too must

the elegance and efficiency of our
solutions

Some questions may only practically
be answered with parallel strategies
Especially applicable to operational
problems - the weather forecast
comes to mind

=) UNIVERSITY

"‘f_ﬁg,
Motivation - why bother? & 7 York

® \Whydoin 10 hours what can be done in 10
minutes?*

e Nobody likes to wait for work to complete - it
breaks the reward loop, and dulls motivation /
excitement

® There are often low hanging parallelisation fruits
(I'm looking at you, ‘for loops) that can satisfy
our lust for speed

* | make no guarantee of this kind of speedup

Motivation - take care!

Sol)?) UNIVERSITY

) X

Computation == energy, energy usage has tradeoffs

Just because you can, doesn’t mean you should

Hardware manufacturers progressing towards energy efficiency
Programmers are more of a mixed bag!

Computation at scale can have a significant impact*

Start small, validate, run minimally

https://arxiv.org/abs/1906.02243

ohg”) UNIVERSITY

'?:"%’3,
e Gene Amdahl, 1922 - 2015

® Designed the WISC, an early digital
computer (6K of memory and 60 operations
a second in the early 50s!), for his PhD
thesis...

® Responsible for significant architectural
developments at IBM (System/360 very
successful mainframe system)

e Eventually formulated “Amdahl’s Law”

https://en.wikipedia.org/wiki/Wisconsin_Integrally_Synchronized_Computer

Finding parallelism - how hard should we try?

o UNIVERSITY

Amdahl’s Law:

: 7
(1-7) + (L
P

Speedup (S) is bound by the fraction (f) of the program which is parallelizable and the degree (p) to which it
can be parallelized

As f tends to 1, speedup is bound only by p, and p is bound by practical limitations!

At large p, speedup is dominated by (1 - f), the fraction of the program which cannot be parallelized

We can’t necessarily throw resources at the problem to make it Go Fast, and might need to rethink

Note the LTE symbol - there are considerations beyond this which will inform potential speedup...

Finding parallelism - how hard should we try?

=) UNIVERSITY

P A~ W

® Important to spend time understanding the problem:

©)

©)

Guards against potential wastefulness

Points you towards reformulating the problem if you discover immovable serial
sections

Sometimes things do have to run in serial, so set it running and write some tests
& documentation...

=) UNIVERSITY

Finding parallelism - where to start? Y& 2 /o«
e Two broad concepts of parallelism to consider:
o Task-first parallelism - identify program sections that could be split into

independent ‘tasks’, which can operate at the same time
o Data-first parallelism - identify subsets of data which can be independently
operated on by your program to solve a larger problem

e For many, thinking about data-first parallelism can provide the
quick wins we crave

e These two approaches overlap - tasks need data, data needs
tasks to operate on it!

Finding parallelism - where to start? %
In either case, we should consider the following:

e Flexibility: allows the design to be adapted as requirements
change - not sensible to dig yourself into a trench early

e Efficiency: parallel programs are useful if they make efficient
use of the resources provided to them

e Simplicity: a parallel solution ought to be sufficiently complex
to achieve its goal, but needs to be debugged and maintained!

=) UNIVERSITY

& T Jork
e Need to neatly encapsulate tasks into callable units

e Need to balance work done by parallel tasks with the amount of

Finding parallelism - task-first considerations

work needed to manage their existence!

e Need to evenly distribute work amongst parallel tasks else suffer
poor parallel efficiency*

® Consider the unit of work represented in a task: individual
function, iterative construct etc. - these can be implemented
differently (more later)

* There’s a whole world of work on this! To begin with, start with a homogeneous work distribution and cross the jagged bridge if/when you get there...

Finding parallelism - task example

e Imagine a study of axe throwing skill with
increasing alcohol consumption, many
participants (ho Amazon voucher needed)
® (Calculating correlations and fitting linear
regressions across many participants in a large file
e Correlations and regressions can be calculated AXE-THROWING
independently! SKILL
® (Can synchronise at the end to compare
correlation and regression coefficients, to produce
a summary oo o % OF 0 1z m % B > - W %

® Being able to efficiently process means we may BLOOD ALCOHOL CONCENTRATION (%)
have more time to iterate on analysis techniques

'%gg UNIVERSITY
OGN

® |sthe problem organised around manipulating a large dataset?

e Are we applying identical / similar operations to subsets of a
dataset?

e Can the dataset manipulations be carried out independently?

e Do you want to be able to run this on a range of systems (e.g.
sometimes on laptop, sometimes on Viking)?

Finding parallelism - data-first considerations

Imagine applying smoothing to a massive, high
resolution image

Achieved using a 2D Gaussian filter - first convolve
image rows, then convolve image columns

We could sequentially iterate through the
convolution - this might take a while...

We know that we can operate on slices of the
image independently, and will need to
synchronise a couple of times

Divide image up into appropriately-sized slices,
then consider task parallelism

Finding parallelism - constraints

We need to think about which of our tasks can be grouped together:
o To identify constraints - do tasks need to synchronise? Do some tasks need to share data? Can groups of tasks

run concurrently to improve parallel efficiency?
o Alogical task grouping simplifies your experience with the program

We need to think about the order in which our tasks must execute:

o Does X need to happen before Y? Do some tasks require online information from others, requiring
simultaneous execution? Is there any ordering at all?!
o This is often straightforward to intuit from a solid understanding of the high level problem

We need to think about which tasks can / must share data:

Especially important when working on large problems - 1/0 is expensive
Data access optimisations
Coupled with grouping and ordering - can data only used by some group when another group is finished?

© C@ENo¥ O

Do we really need to share data? Communication between tasks is also expensive!

Sol)?) UNIVERSITY

Finding parallelism - conclusions

e Am | confident that | understand the problem?

® How much can actually be parallelised?

e Am | working with a large dataset over which | do lots of the
same things?

e How can | group, order, and share data between tasks?

e How straightforward is it to work with my parallel program?

Sol)?) UNIVERSITY

)
‘f_,
«(\

Pattern 1: SPMD & 7ok

® “Single Program, Multiple Data”

e \We have a program (our task) that operates on some data -
initial condition, dataset, whatever - and we’re happy with it

e We've identified that many copies of this task can run
independently of each other

e Where applicable, we’ve identified anywhere tasks need to
synchronise due to ordering constraints

’H!ge UNIVERSITY
. . -a-f‘-‘s
SPMD - how can we achieve it? % Z/ok

e |f we don’t need to synchronise, we can make use of our
system’s workload manager to handle the setup of many

parallel tasks

e |f we do need to synchronise, we should consider an
established supporting tool, e.g. MPI

® Thisis a common parallel pattern - you will find it everywhere!

SPMD - pros and cons

Pros:

e Scales well up to previously mentioned workload distribution limits
® Asimple mental model - lots of the same program, with a bit of go between
e Overheads of parallel task management are relegated to the beginning and end of the program

Cons:

As program content becomes more complex, simplicity of mental model degrades

® Managing program outputs can be messy, and 1/0 at the scale this approach allows you to
reach becomes a dominating efficiency problem

e Need to think carefully about the amount of communication between tasks

SPMD - workload manager example

#!/usr/bin/env bash

#SBATCH —--job-name=ARRAY EXAMPLE
#SBATCH --account=MY-PROJECT-2022
#SBATCH --partition=nodes

#SBATCH --ntasks=1

#SBATCH --cpus-per-task=1

#SBATCH --mem-per-cpu=50M

#SBATCH --time=00:01:00

#SBATCH --output=%x %A %a EXAMPLE.log
#SBATCH --array=1-4

echo "Hello from ${SLURM ARRAY TASK ID}!"

We want to run our task, echo, in an SPMD
configuration - many copies of the program
but with different initial data (the task ID)
We specify the resources needed to run a
single task (--ntasks=1)

We ask output to be written to a file that is
a combination of the job name (%x), the
overarching job ID (%A), and the task id
(%a), separating the output by task

We ask Slurm to set up 4 copies of the task
to be run in parallel (--array=1-4)

We can access our task ID with an
environment variable

(SLURM_ARRAY TASK_ID)

SPMD - MPI example

#include <stdlib.h>
#include <stdio.h>
#include <mpi.h>

int main (int argc, char** argv) {
MPI_Init (NULL, NULL);

int world size;
MPI_Comm_size (MPI_COMM WORLD, &world size);

int world rank;
MPI_Comm rank (MPI_COMM WORLD, &world rank);

printf ("Hello world from task %d!\n", world_rank);
world rank = world rank + 1;

int* world ranks = malloc(sizeof (int) * world size);

MPI_Allgather (&world rank, 1, MPI_INT, world ranks, 1, MPI_INT, MPI_COMM WORLD) ;

int rank sum = 0;
for (int i = 0; i < world size; ++i) {

rank_sum = rank_sum + world ranks[i];
}

printf ("Task %d has computed a sum of %d!\n", world rank, rank_sum);

free (world ranks);
MPI_Finalize();

=) UNIVERSITY

We want our tasks to do something
independently (say “Hello...”), then
communicate (MPI_Allgather) a result
(world_rank + 1) with each other for further
processing (calculating the sum)

We initialise a “communicator” - collection of
tasks which can talk with each other

We can carry out independent work as we
would outside of the parallel context

MPI provides mechanisms for tasks to talk with
each other

We can access our task ID via the “rank”
property - one way to allow tasks to behave
differently

Carefulof if (rank == ...) spaghetti!

SPMD - MPI example

In this case, we want to run several copies

(--ntasks=4) of our task (MY_PROGRAM)

with MPI

We need to make sure that we’ve loaded

the right modules

This time, the MPI runtime will be

managing our SPMD program instead of

Slurm

We can either run this through Slurm (srun
--mpi=) to benefit from more granular

reporting OR run through mpiexec to

benefit from portability

In this case, all output goes to the same

file! Have fun sorting through it for a large

number of tasks...

#!/usr/bin/env bash

#SBATCH —--7 ob-name=MPI EXAMPLE
#SBATCH --account=MY-PROJECT-2022
#SBATCH --partition=nodes

#SBATCH --ntasks=4

#SBATCH --cpus-per-task=1

#SBATCH --mem-per-cpu=200M

#SBATCH —-time=00:01:00

#SBATCH --output=%x %j EXAMPLE.log

module purge
module load toolchain/foss/2021b

srun -n "S${SLURM NTASKS}" --mpi="pmi2" ./MY PROGRAM
OR

mpiexec -n "${SLURM NTASKS}" ./MY PROGRAM

Pattern 2: Loop Parallelism

_
e=a)

oy ?m

& I Hork

A

A,
Exactly what it says on the tin - exploiting potential parallelism
in loops
We have a serial program whose structure is dominated by
computationally intensive loops
We think that the loop iterations could work mostly
independently of each other
We think loop iterations are intensive enough to justify the

overhead of managing parallelism

Loop Parallelism - how can we achieve it?

o
n=n 3 YY)

.;.i.)e ?ITY

QY T Hork

N
If any dependencies exist between loop iterations, rework loops
to minimise these
Employ one of the many loop parallelism support libraries that

exist to do it for us:

o C, C++, Fortran - OpenMP
Python - multiprocessing, Joblib

@)
o R -foreach
o MATLAB - parfor

https://www.openmp.org/
https://docs.python.org/3/library/multiprocessing.html
https://joblib.readthedocs.io/en/latest/parallel.html
https://cran.r-project.org/web/packages/foreach/vignettes/foreach.html
https://www.mathworks.com/help/parallel-computing/parfor.html

Loop Parallelism - pros and cons
Pros:

e Usually a simple bolt-on that will get you parallelism with little investment
e (Can often modify existing programs without concern for semantic changes
e Availability and simplicity of support libraries

Cons:

Scaling limitations - need to employ additional mechanisms to scale beyond your machine

® Feels the full force of Amdahl - if you have few or non-intensive loops, you are unlikely to see
significant performance gains

® (Can stop you from seeing the forest for the trees

Loop Parallelism - Python example

import glob
import os
import typing

import joblib
import matplotlib.pyplot as pyplot
import pandas

def plot values(

data: typing.Tuple[str, pandas.DataFrame], columns: typing.Tuple[str, str]
) -> None:

figure, axes = pyplot.subplots ()

data[l].plot(x=columns[0], y=columns[l], ax=axes)

plot_name = os.path.splitext (os.path.basename(data[0])) [0]

figure.savefig (f"PLOTS/{plot_name}.png")

if _name == "_main_ ":
FILENAMES = glob.glob(os.path.join(os.path.realpath("./DATA"), "*.csv"))
DATAFRAMES = [

(FILENAME, pandas.read_csv(FILENAME)) for FILENAME in FILENAMES
1

PLOT IN A REGULAR LOOP:
for DATAFRAME in DATAFRAMES:
plot_values (DATAFRAME, ("field 1", "field 2"))

PLOT IN A PARALLELISED LOOP:

joblib.Parallel (n_jobs=-1) (
joblib.delayed (plot_values) (DATAFRAME, ("field 1", "field 2"))
for DATAFRAME in DATAFRAMES

)

=) UNIVERSITY

We have a bunch of potentially large data files (*.csv)
from which we would like to plot two data fields against
each other

We could loop through them and plot them one at a
time, this can be slow (especially with Matplotlib!)

We import the joblib module (import joblib)

We know that plotting tasks can occur independently of
each other

We encapsulate the plotting in a function (def
plot_values) for convenient calling

We use the joblib.Parallel construct to execute our loop
over as many cores as we have access to (n_jobs=-1)
Still have a potentially substantial serial section,
depending on how tricky it is to read in data

Loop Parallelism - Python example

We want to run our loop-parallelised
program (my_script.py) so need to
request more than 1 core

We are doing one thing, so ntasks is
now 1

We want that one thing to have
access to 4 cores (--cpus-per-task=4)
Assuming you have a Python
environment set up with the modules
you need, can just run Python!

#!/usr/bin/env bash

#SBATCH --3 ob-name=LP PYTHON EXAMPLE
#SBATCH --account=MY-PROJECT-2022
#SBATCH --partition=nodes

#SBATCH --ntasks=1

#SBATCH --cpus-per-task=4

#SBATCH --mem-per-cpu=200M

#SBATCH --time=00:01:00

#SBATCH --output=%x_ %j EXAMPLE.log

python my script.py

Conclusions

’-f'!fgg UNIVERSITY
GG

Parallelism can be a great way to improve program
performance and to scale to new problem sizes

We should be careful about how much time and how many
resources we throw at parallelisation

There are many support libraries available to facilitate
parallelisation

Coding Club drop-ins are a great place to talk out potential
parallelisation!

%Ie UNIVERSITY

N
1]

A

® Patterns for Parallel Programming; Mattson, Sanders,
Massingill

Resources

e ARCHER training courses
® Coding Club Slack channel and drop-ins
® Experimentation and chatting with Viking support team

https://www.archer2.ac.uk/training/#upcoming-training

