
Thinking in
Parallel
Finding parallelism, some parallel
patterns, implementing these on
Viking

1. Motivation

2. Finding parallelism

3. Pattern 1: SPMD

4. Pattern 2: Loop Parallelism

5. Conclusions

Motivation - what is it?

● Units of work are completed at the same time as each other

● Requires hardware support

● Contrast with sequentialism - units of work are completed one

at a time, one after the other

● We can find and exploit potential parallelism where we

typically think sequentially

Motivation - why bother?
● Parallelism is baked in to the hardware on

which we are carrying out computation!

● From consumer-grade hardware to national

supercomputer class systems, parallel

architectures are the standard

● If you’re walking around with one of these

pens in your pocket, you may as well make

use of the black and red ink

Image credit: https://www.gopromotional.co.uk/

Motivation - why bother?
● Solving problems at scale - much more

than a phrase du jour of enterprise IT!

● As problem sizes increase, so too must

the elegance and efficiency of our

solutions

● Some questions may only practically

be answered with parallel strategies

● Especially applicable to operational

problems - the weather forecast

comes to mind

Image credit: https://itv.com/

Motivation - why bother?
● Why do in 10 hours what can be done in 10

minutes?*

● Nobody likes to wait for work to complete - it

breaks the reward loop, and dulls motivation /

excitement

● There are often low hanging parallelisation fruits

(I’m looking at you, `for` loops) that can satisfy

our lust for speed

* I make no guarantee of this kind of speedup

Image credit: https://fandom.com/

Motivation - take care!
● Just because you can, doesn’t mean you should

● Computation == energy, energy usage has tradeoffs

● Hardware manufacturers progressing towards energy efficiency

● Programmers are more of a mixed bag!

● Computation at scale can have a significant impact*

● Start small, validate, run minimally

* See https://arxiv.org/abs/1906.02243 as an example

https://arxiv.org/abs/1906.02243

Finding parallelism - how hard should we try?

● Gene Amdahl, 1922 - 2015

● Designed the WISC, an early digital

computer (6K of memory and 60 operations

a second in the early 50s!), for his PhD

thesis…
● Responsible for significant architectural

developments at IBM (System/360 very

successful mainframe system)

● Eventually formulated “Amdahl’s Law”

Image credit: https://www.i-programmer.info/history/people/300-gene-amdahl.html

https://en.wikipedia.org/wiki/Wisconsin_Integrally_Synchronized_Computer

Finding parallelism - how hard should we try?

Amdahl’s Law:

● Speedup (S) is bound by the fraction (f) of the program which is parallelizable and the degree (p) to which it
can be parallelized

● As f tends to 1, speedup is bound only by p, and p is bound by practical limitations!
● At large p, speedup is dominated by (1 - f), the fraction of the program which cannot be parallelized
● We can’t necessarily throw resources at the problem to make it Go Fast, and might need to rethink
● Note the LTE symbol - there are considerations beyond this which will inform potential speedup…

Finding parallelism - how hard should we try?

● Important to spend time understanding the problem:
○ Guards against potential wastefulness

○ Points you towards reformulating the problem if you discover immovable serial

sections

○ Sometimes things do have to run in serial, so set it running and write some tests

& documentation…

Finding parallelism - where to start?

● Two broad concepts of parallelism to consider:
○ Task-first parallelism - identify program sections that could be split into

independent ‘tasks’, which can operate at the same time

○ Data-first parallelism - identify subsets of data which can be independently

operated on by your program to solve a larger problem

● For many, thinking about data-first parallelism can provide the

quick wins we crave

● These two approaches overlap - tasks need data, data needs

tasks to operate on it!

Finding parallelism - where to start?

In either case, we should consider the following:

● Flexibility: allows the design to be adapted as requirements

change - not sensible to dig yourself into a trench early

● Efficiency: parallel programs are useful if they make efficient

use of the resources provided to them

● Simplicity: a parallel solution ought to be sufficiently complex

to achieve its goal, but needs to be debugged and maintained!

Finding parallelism - task-first considerations

● Need to neatly encapsulate tasks into callable units

● Need to balance work done by parallel tasks with the amount of

work needed to manage their existence!

● Need to evenly distribute work amongst parallel tasks else suffer

poor parallel efficiency*

● Consider the unit of work represented in a task: individual

function, iterative construct etc. - these can be implemented

differently (more later)

* There’s a whole world of work on this! To begin with, start with a homogeneous work distribution and cross the jagged bridge if/when you get there…

Finding parallelism - task example

● Imagine a study of axe throwing skill with

increasing alcohol consumption, many

participants (no Amazon voucher needed)

● Calculating correlations and fitting linear

regressions across many participants in a large file

● Correlations and regressions can be calculated

independently!

● Can synchronise at the end to compare

correlation and regression coefficients, to produce

a summary

● Being able to efficiently process means we may

have more time to iterate on analysis techniques

AXE-THROWING

Image credit: https://xkcd.com/

Finding parallelism - data-first considerations

● Is the problem organised around manipulating a large dataset?

● Are we applying identical / similar operations to subsets of a

dataset?

● Can the dataset manipulations be carried out independently?

● Do you want to be able to run this on a range of systems (e.g.

sometimes on laptop, sometimes on Viking)?

Finding parallelism - data-first example

● Imagine applying smoothing to a massive, high

resolution image

● Achieved using a 2D Gaussian filter - first convolve

image rows, then convolve image columns

● We could sequentially iterate through the

convolution - this might take a while…
● We know that we can operate on slices of the

image independently, and will need to

synchronise a couple of times

● Divide image up into appropriately-sized slices,

then consider task parallelism

Image credit: https://www.mathworks.com/

Finding parallelism - constraints
● We need to think about which of our tasks can be grouped together:

○ To identify constraints - do tasks need to synchronise? Do some tasks need to share data? Can groups of tasks

run concurrently to improve parallel efficiency?

○ A logical task grouping simplifies your experience with the program

● We need to think about the order in which our tasks must execute:
○ Does X need to happen before Y? Do some tasks require online information from others, requiring

simultaneous execution? Is there any ordering at all?!

○ This is often straightforward to intuit from a solid understanding of the high level problem

● We need to think about which tasks can / must share data:
○ Especially important when working on large problems - I/O is expensive

○ Data access optimisations

○ Coupled with grouping and ordering - can data only used by some group when another group is finished?

○ Do we really need to share data? Communication between tasks is also expensive!

Finding parallelism - conclusions
● Am I confident that I understand the problem?

● How much can actually be parallelised?

● Am I working with a large dataset over which I do lots of the

same things?

● How can I group, order, and share data between tasks?

● How straightforward is it to work with my parallel program?

Pattern 1: SPMD
● “Single Program, Multiple Data”

● We have a program (our task) that operates on some data -

initial condition, dataset, whatever - and we’re happy with it

● We’ve identified that many copies of this task can run

independently of each other

● Where applicable, we’ve identified anywhere tasks need to

synchronise due to ordering constraints

SPMD - how can we achieve it?
● If we don’t need to synchronise, we can make use of our

system’s workload manager to handle the setup of many

parallel tasks

● If we do need to synchronise, we should consider an

established supporting tool, e.g. MPI

● This is a common parallel pattern - you will find it everywhere!

SPMD - pros and cons
Pros:

● Scales well up to previously mentioned workload distribution limits

● A simple mental model - lots of the same program, with a bit of go between

● Overheads of parallel task management are relegated to the beginning and end of the program

Cons:

● As program content becomes more complex, simplicity of mental model degrades

● Managing program outputs can be messy, and I/O at the scale this approach allows you to

reach becomes a dominating efficiency problem

● Need to think carefully about the amount of communication between tasks

SPMD - workload manager example
#!/usr/bin/env bash

#SBATCH --job-name=ARRAY_EXAMPLE
#SBATCH --account=MY-PROJECT-2022
#SBATCH --partition=nodes
#SBATCH --ntasks=1
#SBATCH --cpus-per-task=1
#SBATCH --mem-per-cpu=50M
#SBATCH --time=00:01:00
#SBATCH --output=%x_%A_%a_EXAMPLE.log
#SBATCH --array=1-4

echo "Hello from ${SLURM_ARRAY_TASK_ID}!"

● We want to run our task, echo, in an SPMD
configuration - many copies of the program
but with different initial data (the task ID)

● We specify the resources needed to run a
single task (--ntasks=1)

● We ask output to be written to a file that is
a combination of the job name (%x), the
overarching job ID (%A), and the task id
(%a), separating the output by task

● We ask Slurm to set up 4 copies of the task
to be run in parallel (--array=1-4)

● We can access our task ID with an
environment variable
(SLURM_ARRAY_TASK_ID)

SPMD - MPI example
#include <stdlib.h>
#include <stdio.h>
#include <mpi.h>

int main(int argc, char** argv) {
MPI_Init(NULL, NULL);

int world_size;
MPI_Comm_size(MPI_COMM_WORLD, &world_size);

int world_rank;
MPI_Comm_rank(MPI_COMM_WORLD, &world_rank);

printf("Hello world from task %d!\n", world_rank);

world_rank = world_rank + 1;

int* world_ranks = malloc(sizeof(int) * world_size);
MPI_Allgather(&world_rank, 1, MPI_INT, world_ranks, 1, MPI_INT, MPI_COMM_WORLD);

int rank_sum = 0;
for (int i = 0; i < world_size; ++i) {

rank_sum = rank_sum + world_ranks[i];
}

printf("Task %d has computed a sum of %d!\n", world_rank, rank_sum);

free(world_ranks);
MPI_Finalize();

}

● We want our tasks to do something
independently (say “Hello…”), then
communicate (MPI_Allgather) a result
(world_rank + 1) with each other for further
processing (calculating the sum)

● We initialise a “communicator” - collection of
tasks which can talk with each other

● We can carry out independent work as we
would outside of the parallel context

● MPI provides mechanisms for tasks to talk with
each other

● We can access our task ID via the “rank”
property - one way to allow tasks to behave
differently

● Careful of if (rank == ...) spaghetti!

SPMD - MPI example
#!/usr/bin/env bash

#SBATCH --job-name=MPI_EXAMPLE
#SBATCH --account=MY-PROJECT-2022
#SBATCH --partition=nodes
#SBATCH --ntasks=4
#SBATCH --cpus-per-task=1
#SBATCH --mem-per-cpu=200M
#SBATCH --time=00:01:00
#SBATCH --output=%x_%j_EXAMPLE.log

module purge
module load toolchain/foss/2021b

srun -n "${SLURM_NTASKS}" --mpi="pmi2" ./MY_PROGRAM

OR

mpiexec -n "${SLURM_NTASKS}" ./MY_PROGRAM

● In this case, we want to run several copies
(--ntasks=4) of our task (MY_PROGRAM)
with MPI

● We need to make sure that we’ve loaded
the right modules

● This time, the MPI runtime will be
managing our SPMD program instead of
Slurm

● We can either run this through Slurm (srun
… --mpi=) to benefit from more granular
reporting OR run through mpiexec to
benefit from portability

● In this case, all output goes to the same
file! Have fun sorting through it for a large
number of tasks...

Pattern 2: Loop Parallelism
● Exactly what it says on the tin - exploiting potential parallelism

in loops

● We have a serial program whose structure is dominated by

computationally intensive loops

● We think that the loop iterations could work mostly

independently of each other

● We think loop iterations are intensive enough to justify the

overhead of managing parallelism

Loop Parallelism - how can we achieve it?

● If any dependencies exist between loop iterations, rework loops

to minimise these

● Employ one of the many loop parallelism support libraries that

exist to do it for us:
○ C, C++, Fortran - OpenMP

○ Python - multiprocessing, Joblib

○ R - foreach

○ MATLAB - parfor

https://www.openmp.org/
https://docs.python.org/3/library/multiprocessing.html
https://joblib.readthedocs.io/en/latest/parallel.html
https://cran.r-project.org/web/packages/foreach/vignettes/foreach.html
https://www.mathworks.com/help/parallel-computing/parfor.html

Loop Parallelism - pros and cons
Pros:

● Usually a simple bolt-on that will get you parallelism with little investment

● Can often modify existing programs without concern for semantic changes

● Availability and simplicity of support libraries

Cons:

● Scaling limitations - need to employ additional mechanisms to scale beyond your machine

● Feels the full force of Amdahl - if you have few or non-intensive loops, you are unlikely to see

significant performance gains

● Can stop you from seeing the forest for the trees

Loop Parallelism - Python example
import glob
import os
import typing

import joblib
import matplotlib.pyplot as pyplot
import pandas

def plot_values(
 data: typing.Tuple[str, pandas.DataFrame], columns: typing.Tuple[str, str]
) -> None:
 figure, axes = pyplot.subplots()
 data[1].plot(x=columns[0], y=columns[1], ax=axes)
 plot_name = os.path.splitext(os.path.basename(data[0]))[0]
 figure.savefig(f"PLOTS/{plot_name}.png")

if __name__ == "__main__":
 FILENAMES = glob.glob(os.path.join(os.path.realpath("./DATA"), "*.csv"))
 DATAFRAMES = [
 (FILENAME, pandas.read_csv(FILENAME)) for FILENAME in FILENAMES
]

 # PLOT IN A REGULAR LOOP:
 for DATAFRAME in DATAFRAMES:
 plot_values(DATAFRAME, ("field_1", "field_2"))

 # PLOT IN A PARALLELISED LOOP:
 joblib.Parallel(n_jobs=-1)(
 joblib.delayed(plot_values)(DATAFRAME, ("field_1", "field_2"))
 for DATAFRAME in DATAFRAMES
)

● We have a bunch of potentially large data files (*.csv)
from which we would like to plot two data fields against
each other

● We could loop through them and plot them one at a
time, this can be slow (especially with Matplotlib!)

● We import the joblib module (import joblib)
● We know that plotting tasks can occur independently of

each other
● We encapsulate the plotting in a function (def

plot_values) for convenient calling
● We use the joblib.Parallel construct to execute our loop

over as many cores as we have access to (n_jobs=-1)
● Still have a potentially substantial serial section,

depending on how tricky it is to read in data

Loop Parallelism - Python example
#!/usr/bin/env bash

#SBATCH --job-name=LP_PYTHON_EXAMPLE
#SBATCH --account=MY-PROJECT-2022
#SBATCH --partition=nodes
#SBATCH --ntasks=1
#SBATCH --cpus-per-task=4
#SBATCH --mem-per-cpu=200M
#SBATCH --time=00:01:00
#SBATCH --output=%x_%j_EXAMPLE.log

python my_script.py

● We want to run our loop-parallelised
program (my_script.py) so need to
request more than 1 core

● We are doing one thing, so ntasks is
now 1

● We want that one thing to have
access to 4 cores (--cpus-per-task=4)

● Assuming you have a Python
environment set up with the modules
you need, can just run Python!

Conclusions
● Parallelism can be a great way to improve program

performance and to scale to new problem sizes

● We should be careful about how much time and how many

resources we throw at parallelisation

● There are many support libraries available to facilitate

parallelisation

● Coding Club drop-ins are a great place to talk out potential

parallelisation!

Resources
● Patterns for Parallel Programming; Mattson, Sanders,

Massingill

● ARCHER training courses

● Coding Club Slack channel and drop-ins

● Experimentation and chatting with Viking support team

https://www.archer2.ac.uk/training/#upcoming-training

