From Code To Computer:

What happens when you hit “go”

Jacob Wilkins

Scientific Computing Department, STFC

May 12, 2021

Science and
Technology
Facilities Council

1/44

@ Introduction
@ Compilation/Interpretation

@ Calculation

@ Languages

2/44

@ A code is just a string of letters and numbers.
@ It has to be processed just as anything else does.
#"Hej Verden!”o|

print ([]and(0Oand” Hola_mon!"or" Helo_.Byd!")or" Hai.
dunial™)

Python — Hai dunia! — Malay
Perl — Helo Byd! — Welsh
Ruby — Hola mén! — Catalan

Haystack — Hej Verden! — Danish

https://codegolf.stackexchange.com/questions /146544 / hello-world-in-multiple-languages

3/44

What happens first?

Source String

|

"Parser"

Lexical Analysis
{Create Tokens)

Tokens

7

Syntactic Analysis
{Create Tree)

FParse Tree

fif

Compiler, Interpreter
or Translator

Crutput

i

https://en.wikipedia.org/wiki/Parsing 4/44

Our example

@ We're going to mostly look at what happens to the
following example code:

int main () {

int a = 3;
int b = 2;
int x = (a + b) * 2;
return x;

5/44

Lexers

@ A lexer transforms the strings of your code to something the
machine can read.

@ Recognise the “grammar” of the language and separate it
into fundamental, described pieces.

@ These pieces are often called “tokens” and in simple terms
correspond to parts of speech.

Possible Token | Part of Speech Example
Identifier Proper Noun | x, colour, myStr
Operator Verb +, pow, myFunc
Separator Punctuation 505 {)

Literal Noun 2, "string”, True

6/44

Lexers

The line:

X = (a 4+ b) 2

x becomes first a add b then times 2

PN v P PNV PN P v NP
Might become:

[(identifier , x), (operator, =), (separator, (),

e

(identifier , a), (operator, +), (identifier, b),
(separator,)), (operator, x), (literal,b 2),
(separator, ;)]

7/44

Great, now what?

@ So, we have broken our code down into chunks, but we still
have work to do.

@ We need some order of operations.

@ We need to know which variable goes with which operation.

8/44

Parsers

@ Parsers transform these tokens into a tree
@ Tree determines order of operations.

assign

/

X times

/

plus 2

/N

9/44

Parsers

while b 1= 0

if a>b
a:=a-—b>b
else
b :=Db— a
return a

variabl
name: a

https://en.wikipedia.org/wiki/Abstract_syntax_tree
10/ 44

Intermediate Representation

@ Need to reorder tree into something computer can use.
@ Leads to some language which looks like code.

o Different methods of implementation.

Language IR

0 LOADNAME 0 (a)

2 LOADNAME 1 (b)

4 BINARY_ADD

6 LOAD_CONST 0 (2)

Python 8 BINARY_MULTIPLY

10 STORE.NAME 2 (x)
12 LOAD_CONST 1 (None)

14 RETURN_VALUE

(set (reg:SI 87 [-1])
(plus:SI (reg:SI 90)
(reg:SI 91)))
(set (reg:SI 92)
ashift:SI (reg:SIl 87 -1
GCC (C) (Econst,int { [Oxl)])))
(set (mem/c:SI (plus:DI (reg/f:DI 82 virtual—stack—vars)
(const_int —4 [Oxfffffffffffffffc]))
[1 x40 S4 A32])

(reg:SI 92))

Intermediate Representation

@ Other advantages too:
@ For something like GCC or the .NET Framework:

o Compile many languages
e Don't want copied code (e.g. optimisation)
= Compile to some common language

@ For something like Java or Python:

e Feeding code into virtual machine
o Virtual machine in other (probably lower-level) language

12/44

Intermediate Representation

@ Often similar to the rendering which can be read by
machine.

@ Might break down code.

t1:=bxb
t2:=4%a
t3:=t2*c
t4:=t1-t3
t5:=sqrt(t4)
t6:=0-b
t7:=tb5+t6
t8:=2%a
t9:=t7/t8
x:=t9

x = (-b + sqrt(®® —4xaxc))/(2* a); =

13 /44

Intermediate Representation

o Often similar to the rendering which can be read by
machine.

o Might break down code.

@ Can contain optimisation hints.

(insn 9 8 10 2 (parallel [
(set (reg:SI 87 [-1])
(plus:SI (reg:SI 90)
(reg:SI 91)))
(clobber (reg:CC 17 flags))
]) "test.c":6 —1
(expr_list :REG.EQUAL (plus:SI (mem/c:Sl (plus:DI (reg/f:DI 82
virtual—stack—vars)
(const_int —12 [OxfFFFFFFFFFFFFFFA])) [1 at0 S4 A32])
(mem/c:SI (plus:DI (reg/f:DI 82 virtual—stack—vars)
(const_int —8 [OxfFfffffffffffffg])) [1 b+0 S4 A32]))
(nil)))

14/ 44

Intermediate Representation

o Often similar to the rendering which can be read by
machine.

@ Might break down code.
@ Can contain optimisation hints.

@ Might go through several optimising iterations.

test.c.229r.expand test.c.230r.vregs test.c.231r.into_cfglayout
test.c.232r.jump test.c.244r.reginfo test.c.264r.outof_cfglayout
test.c.265r.splitl test.c.267r.dfinit test.c.268r.mode_sw
test.c.269r.asmcons test.c.273r.ira test.c.274r.reload
test.c.278r.split2 test.c.282r.pro_and_epilogue test.c.285r.jump2
test.c.298r.stack test.c.299r.alignments test.c.301r.mach
test.c.302r.barriers test.c.306r.shorten test.c.307r.nothrow
test.c.308r.dwarf2 test.c.309r.final test.c.310r.dfinish

15/ 44

Assembly

@ Assembly is the lowest level “human readable” code.
@ Machine specific.

@ Deals explicitly with elements of the chip.

main:

.LFBO:
.cfi_startproc
pushq %rbp
.cfi_def_cfa_offset 16
.cfi_offset 6, —16

movq %rsp , %rbp
.cfi_def_cfa_register 6
movl $3, —12(%rbp)
movl $2, —8(%rbp)
movl —12(%rbp) , %edx
movl —8(%rbp), %eax
addl %edx , %eax

addl Y%eax , %eax

movl Y%eax , —4(%rbp)
movl —4(%rbp) . %eax

popq %rbp
.cfi_def_cfa 7, 8
ret

.cfi_endproc

16 /44

Interpreted Machine Code

@ And interpreted languages?

@ Most have a huge switch statement selecting the operation.
o Call functions from interpreter.

@ The following is taken from ceval.c in core CPython:

case TARGET(BINARY_FLOOR.DIVIDE) {...}
case TARGET(BINARY.MODULO): {...}
case TARGET(BINARY.ADD): {
PyObject *right = POP();
PyObject *left = TOP()
PyObject *sum;
if (PyUnicode_CheckExact(left) &&
PyUnicode_CheckExact(right)) {
sum = unicode_concatenate(tstate, left, right, f, next_instr);
/* unicode_concatenate consumed the ref to left x*/

}

else {
sum = PyNumber_Add(left , right);
Py_DECREF(left);

¥

Py_DECREF(right);

SET_TOP(sum);

if (sum = NULL)
goto error;

DISPATCH () ;

17 /44

Machine Code

@ But computers don't deal with assembly.

@ As its name suggests an assembler assembles the assembly
into machine code.

@ Each number translates to a CPU instruction.

5fa: 55 push %rbp

5fb: 48 89 e5 mov ‘%rsp,%hrbp

5fe: c7 45 f4 03 00 00 00 movl $0x3,-0xc(%rbp)
605: c7 45 £8 02 00 00 00 movl $0x2,-0x8 (%rbp)

60c: 8b 55 f4 mov -0xc (%rbp) ,%edx
60f: 8b 45 8 mov -0x8 (%rbp) ,%eax
612: 01 dO add ‘hedx, heax

614: 01 cO add ‘heax,%heax

616: 89 45 fc mov ‘%heax,-0x4 (%rbp)
619: 8b 45 fc mov -0x4 (%rbp) , heax
61c: 5d pop %rbp

61d: c3 retq

18/ 44

Why does it change?

@ What is optimisation?

@ Why does a compiler change my code?

19/ 44

Why does it change?

@ What is optimisation?
@ Why does a compiler change my code?

@ We're going to look at several ways in which a compiler
might change your code.

20/ 44

Optimisation

@ Compilers have many collective years of experience dealing
with code.

@ Recognise common patterns and do the smart thing.

21/44

Optimisation

@ Compilers have many collective years of experience dealing

with cod

e.

@ Recognise common patterns and do the smart thing.

int main () {
int a =3

int b =2

int x = (

b) =

return x;

1

a +
2;

gcc -00 -march=haswell

main :

push

mov
mov
mov
mov
mov
add
add
mov
mov
pop
ret

rbp

rbp, rsp

DWORD PTR [rbp—4], 3
DWORD PTR [rbp —8], 2
edx, DWORD PTR [rbp —4]
eax, DWORD PTR [rbp —8]
eax, edx

eax, eax

DWORD PTR [rbp —12], eax
eax, DWORD PTR [rbp—12]
rbp

22/44

Optimisation

@ Compilers have many collective years of experience dealing
with code.

@ Recognise common patterns and do the smart thing.

gcc —-03 -march=haswell

int main () {
int a = 3;
int b =2 main :
int x = (a + mov eax, 10
b) * 2; ret
return x;

23/44

Optimisation - Another Example

int countSetBits (int x) {

int count = 0;
while (x != 0) {
count++;

x &= x—1;
}

return count;

24 /44

Optimisation - Another Example

gcc —-00 -march=haswell

countSetBits(int):
push rbp

int countSetBits (int mov rbp, rsp
X) { mov DWORD PTR [rbp —20], edi
. mov DWORD PTR [rbp—4], 0
int count = 0; L3
. _ cmp DWORD PTR [rbp —20], 0O
while (x != 0) { o s [:
count-++; inc DWORD PTR [rbp —4]
mov eax, DWORD PTR [rbp —20]
x &= x—1; dec eax
} and DWORD PTR [rbp —20], eax
jmp L3
return count; L2:
} mov eax, DWORD PTR [rbp —4]
pop rbp
ret

25 /44

Optimisation - Another Example

gcc —-03 -march=haswell

int countSetBits (int

x) {
int count = 0;
. y countSetBits(int):
while (x 1= 0) { xor (t)aax eax
count++; popcnt eax, edi
x &= x—1; ret
}

return count;

26 /44

Hitting the chip

@ People like to quote the Hz of a CPU (e.g. 2.4GHz)
@ Cycle rate like a heartbeat.

o Simplistically RISC CPUs try to run ~1 instruction per
“cycle”.

[IF [1iD[=4] MEM | WB
li IF[ID]EX|MEM|WB

IF [1ID|EX | MEM | WB]

t

_—

Image by Poil: https://en.wikipedia.org/wiki/Central_processing_unit

27 /44

Beyond the CPU

@ Modern CPUs are complex.

@ Multiple layers of memory for faster access.

o Different controllers manage copying memory.

Instructions CPU Core

L1 Cache (on
chip, banked)

L2 Cache Unified

e

L3 Cache (Unified)

Main Memory

Image by Lambtron: https://en.wikipedia.org/wiki/Central_processing_unit
Image by Kbbuch: https://en.wikipedia.org/wiki/Cache_hierarchy

28 /44

Stored Up For a Rainy Day

@ Cache exists to speed up your calculations.
@ Preloads data from memory to make job easier.
@ Doesn't just load one value, loads and fills a “cache line”
@ Cache misses require loading again from main memory.
@ Caches speed up data reuse!
Type Cycles Time Size
L1 CACHE ~ 4 cycles 21-12ns ~ 64 KiB
L2 CACHE | ~10cycles | 53-3.0ns | ~ 256 KiB
L3 CACHE | ~40cycles | 21.4-120ns | ~ 4 MiB
Main Memory — ~ 60 ns ~ 8 GiB
SSD — ~ 50 us ~ 256 GiB
HDD — ~ 10 ms ~1TiB

Table: Memory Access Speed on a Core i7 Xeon 5500 (approximate)

https://software.intel.com/sites/products/collateral /hpc/vtune/performance_analysis_guide.pdf

29 /44

Through the pipeline

as possible.

[F [D | EX [MEM

Modern CPUs “pipeline” data.
Rather than doing one job at a time, they try to do as much

Caches are key in doing this by avoiding memory access.

May change the order of code to do this better.

i [F b [EX WB
- [F | MEM WB
IF EX [MEM| WB |
ID | EX |MEM| WB |

Image by Poil: https://en.wikipedia.org/wiki/Central_processing_unit

30/44

Into the “modern” age

@ Modern computers are parallel.

@ Compiler will change code to exploit vector processing.

[F | D | Ex MEM[WB
| F | D | EX MEM|wB
I IF [1D EX [MEM| wB
IF [1D EX [MEM| wB
IF 1D | EX |MEM| wB
IF 1D | EX |MEM| wB

[F [ID | Ex |[MEM| wB

| IF | ID | EX |MEM| wB
IF | 1D [EX [MEM| WB |
IF | 1D [EX [MEM] wB |

Image by Poil: https://en.wikipedia.org/wiki/Central_processing_unit

31/44

Vectorisation Example

Source

int testFunction(int* input, int length) {

int sum = 0;

for (int i = 0; i < length; ++i) {
sum += input[i];

}

return sum;

}

32/44

Vectorisation Example

gcc -03 -march=haswell

testFunction(int*, int):

test esi, esi
gcc -00 -march=haswell e
. . . cmp eax, 6
testFunction(int*, int): jbe L8
push rbp mov edx, esi
mov rbp, ISP mov rax, rdi
mov QWORD PTR [rbp-24], rdi vpxor xmm0, xmmO, xmm0
mov DWORD PTR [rbp-28], esi shr odx . 3
mov DWORD PTR [rbp-4], 0 cal rdx . &
mov DWORD PTR [rbp-81, 0 add rdx . rdi
.L3: L5: ’
mov eax, DWORD PTR [rbp-8] vpaddd ymm0, ymmO, YMMWORD PTR
cmp eax, DWORD PTR [rbp-28] [rax]
jee -L2 add rax, 32
mov eax, DWORD PTR [rbp-8] cmp rax, rdx
cdqe jne .15
lea rdx, [O+rax*4] vmovdga xmml xmmO0
mov rax, QWORD PTR [rbp-24] vextractil2s8 xmm0 , ymmO, Ox1
add rax, rdx i
mov edx, esi
mov eax, DWORD PTR [rax] vpaddd xmmO, xmml, xmmO
add DWORD PTR [rbp-4], eax and odx . -8
inc DWORD PTR [rbp-8] vpsrldq xmmi, xmm0, 8
2. Jmp -L3 vpaddd xmmO, xmmO, xmml
-L2: vpsrldq xmml, xmmO, 4
mov eax, DWORD PTR [rbp-4] vpaddd xmm0, xmmO, xmml
pop rbp vmovd eax, xmmO
ret test sil, 7
je L11
vzeroupper

t...] 33/44

You might be smart. Compilers are smarter

@ Compilers have many years experience.
@ Compilers have looked at CPU instruction sets.
@ Compilers know many tricks.

X2
lea eax, [rdi+rdi]
.x8:
return x#2: lea eax, [0+ rdix*8]
.x32:
return xx*8;
sal eax, 5
return x*32; «7 -
return 7, lea eax, [0+ rdix*8]
return xx3; sub eax, edi
return xx65599; <3 '
return EX ii é?)_+ . lea eax, [rdi+rdix*2]
x X x65599 :
imul eax, edi, 65599
.x655900 :
imul eax, edi, 65599

34 /44

Exploring for yourself

o Excellent talk by Matt Godbolt:
KEYNOTE: What Everyone Should Know About How
Amazing Compilers Are - Matt Godbolt [C++ on Sea 2019]
https://www.youtube.com/watch?v=wOsz5WbS5AM
@ Playing with his “Compiler Explorer”
godbolt.org

35/44

https://www.youtube.com/watch?v=w0sz5WbS5AM
godbolt.org

Menagerie of Languages

@ So why is there a zoo of languages?

@ Why don’t we just have one language we all use to talk to
computers?

36 /44

Menagerie of Languages

@ So why is there a zoo of languages?

@ Why don’t we just have one language we all use to talk to
computers?

HOW STANDARDS PROUFERATE:
{665 AC CHARGERS, CHARACTER ENCOONGS, N STANT MESSAGING, ETC)

M7 RDICULOLS!

WE NEED To DEVELCP

SITUATION: || JIE UNVERSAL SO0 | SrruaTion:
THERE ARE USE. CASES. YERH! THERE ARE

dcorveniG || U~) i correm
STANDPRDS. STANDPRDS.

)

37/44

Not everything is a nail

o C

o Low-level
e Full control
e Strict typing

38/44

Not everything is a nail

o C

o Low-level
e Full control
e Strict typing
@ Fortran
o Restrictive
o Abstracts many tasks
e Array handling

39/44

Not everything is a nail

o C
o Low-level
o Full control
e Strict typing
@ Fortran
o Restrictive
o Abstracts many tasks
e Array handling

@ Python

o Flexible typing
e Dynamic allocation
o Interpreted

40/ 44

Comparison

C
#include <math.h>
int len = 10;
int arr[10] = {2};
for(int i=0; i<len; i++4) {pow(arr[i].,i);}
Fortran
integer , dimension(0:9) :: arr
arr = 2
do i = Ibound(arr), ubound(arr)
arr(i) = arr(i)*xi
end do
IOR
arr = [(2**i, i=0,9)]
Python
arr = [2xxi for i in range(10)]

41/44

Other philosophies/needs

@ Only looked at procedural imperative languages...
e Many different philosophies.
Haskell - Functional Language

factorial :: Integral — Integral
factorial 0 =1
factorial n =n % factorial (n—1)

J - Array Programming Language

factorial =: %/ &: >: @: i.

NB. product after increment to list (0..N—1)
LISP - List programming language

(defun factorial (n)
(if (zerop n) 1 (* n (factorial (1— n)))))

Matlab - Built-In
factorial (N)

42 /44

Different languages for different purposes

@ Languages are designed for different purposes.

@ Choose the right tool for the job.

43 /44

Compilers have hundreds of combined years of experience.

Don't try to outsmart the compiler

e Straightforward, clear code helps humans and the compiler.
e Use the compiler as the tool it's meant to be.
o Learn how to use your compiler effectively to help you!

Learn how to use things by taking them apart.

Try to choose the right tool for the job before you start.
e Working around rather than with your language.
o Not using the core features of your language.
e Language not able to do what you want.

44 /44

	Introduction
	Compilation/Interpretation
	Calculation
	Languages

