
Introduction to Version Control
Peter Hill

Introduction to Version Control||1/55

Outline

What and why version control
Basics of git
Using a web service

Introduction to Version Control||2/55

What is version control?

Is_this_version_control_meme.jpg

Introduction to Version Control||3/55

What is version control?

Version control systems record changes to a file/set of files over time
Not just software! This talk is under version control
Allows you revert files back to a previous state, compare changes over time, see who
last modified something, etc.

Instead of keeping multiple copies of the same file, normally just store the
differences (“diffs”) between versions of the files

Introduction to Version Control||4/55

Why is version control important?

Tracking versions
Know instantly which is the latest version
Roll back to previous versions
See history of project/file/line
Find out when bugs were introduced
Maintain/compare different versions

Coordination between developers
Easier to keep track of when changes are made
Easier to work on separate features
Easier to merge distinct changes from separate developers
Easier to resolve conflicts on same features
Tracking who made what changes

If it’s not under version control, it doesn’t exist!

Introduction to Version Control||5/55

The gist of git

The building blocks: diffs

A simple diff

Shows differences between individual lines
Lines beginning with “-” have been removed
Lines beginning with “+” have been added
Changed lines are shown as removal plus
addition

Introduction to Version Control||6/55

The gist of git
Add diffs to a staging area

Add diffs to stage

Introduction to Version Control||7/55

The gist of git
Commit the staging area to the repository

Commit changes to the repository

Introduction to Version Control||8/55

The gist of git
Commit the staging area to the repository

Commit changes to the repository

Introduction to Version Control||9/55

This gist of git

Sync with other people’s repositories

Sync local and remote repositories

Introduction to Version Control||10/55

Using git

The Three Stages

Important to understand correctly
Three main states that files can be in:

1 Committed: data stored in repo
2 Modified: file is changed but not

committed
3 Staged: modified file marked to go

into next commit

git three stages

Introduction to Version Control||11/55

Using git

Graphical interfaces
For Mac and Windows:

Sourcetree: https://www.sourcetreeapp.com/
For Linux:

git-cola: http://git-cola.github.io/
For Emacs:

magit: https://magit.vc/

Introduction to Version Control||12/55

Today’s toolkit

What you’ll need
Linux
A terminal
A text editor
Optionally: a file browser

Introduction to Version Control||13/55

Before we begin. . .

. . . a little bit about yourself
We need to give git a little bit of information about ourselves:
$ git config --global user.name "Your Name"
$ git config --global user.email your.email@example.com
Replace "Your Name" with your name, and your.email@example.com with your
email address.
This sets the “global” name and email, but you can also set it individually for each
repository

Useful to separate work and personal repos!

Introduction to Version Control||14/55

First steps

Making a repository
We need to create a repository first
$ mkdir my_git_test
$ cd my_git_test
$ git init
Let’s see what it looks like
What do you see after typing each of the following commands?
$ ls
$ ls -A
$ git status

Introduction to Version Control||15/55

git commands

Getting help
$ git <command> --help

git status
git status: Show the working tree status
Glossary “Working tree”: what the repository directory looks like, including any
changes
Going to be our most used command today!
Use it whenever you’re not sure what’s going on

Introduction to Version Control||16/55

First steps

Initial commit
Add some text to a new file and save it in your repository
What does git status show now?
Follow the instructions to add your new file to the staging area
Check git status again
$ echo "Some text" > newfile.txt
$ git status
$ git add newfile.txt
$ git status

Introduction to Version Control||17/55

First steps

Initial commit
Now we need to actually commit our commit
$ git commit
Your default editor should pop up

If you hate it, change your EDITOR variable
The traditional first commit message is “Initial commit”
Now check git status again

Introduction to Version Control||18/55

git commands

git add
git add <file>: Add file to the index
Glossary “Index”: the stored form of the working tree, i.e. the staging area, our
“box”

git commit
git commit: Record changes to the repository
Until you run git commit, the changes made to the staging area (index) remain
separate from the working tree and repository

Introduction to Version Control||19/55

Writing commit messages

Writing good commit messages is a skill!
Commit messages serve as documentation for your project
Finish the sentence: “This commit will. . . ”

Good
Fix bug in boundary conditions
Add new routine for calculating potential

Bad
update code
I fixed some stuff

Introduction to Version Control||20/55

First steps

Making our first change
Change the text in your file however you like
Time for git status
Ok, but how to actually see the changes?
$ git diff # All files
$ git diff <file>... # Just certain files
Press q to quit the “pager”

Commit the change
It’s a two-step step: add then commit
$ git add <file>
$ git commit

Introduction to Version Control||21/55

git commands

git diff
git diff: Show changes between commits, commit and working tree, etc
Without arguments, or with just files, shows differences between the working tree
and the staging area
Use git diff --staged to see the difference between staging area and latest
commit (i.e. what’s going into the next commit)

Introduction to Version Control||22/55

The basics

Updating the staging area
Make a change and git add it
Now make another change to the same bit of that file
Check git status, what do you see?
Try git diff, then git diff --staged, what’s the difference?
git add your second change, and try the two diff commands again

Introduction to Version Control||23/55

The basics

Updating the staging area
Edit file
$ git add <file>
Edit file again
$ git status
$ git diff
$ git diff --staged
$ git add <file>
$ git status
$ git diff
$ git diff --staged

Introduction to Version Control||24/55

The basics

Looking back
Make some more changes and make two or three more commits
View the history so far:
$ git log
View a particular commit in more detail:
$ git show <hash>
Glossary “commit hash”: a 40-digit hexadecimal “hash” that uniquely identifies a
commit. Generally only ~7 digits are needed. The largest projects need upto 12

Introduction to Version Control||25/55

git commands

git log
git log: Show commit logs
There are lots of options here!
Lots of ways to format the log, or search for particular commits

git show
git show: Show various types of objects
Also lots of options for formatting the output, etc.

Introduction to Version Control||26/55

The basics

Undoing unwanted changes
Delete your file!
Check git status – can you see how to get it back (i.e. discard the change)?

Undoing changes to the index
Make a change to a file and now add but don’t commit
The usual – git status – how do you remove something from the staging area?

Introduction to Version Control||27/55

The basics

Undoing things
Make a change to a file
$ git checkout -- <file>
Make another change
$ git add <file>
$ git reset HEAD <file>

Introduction to Version Control||28/55

git commands

git checkout
git checkout [options]: Switch branches or restore working tree files
Glossary “checkout”: modify the working tree en masse
Remove unwanted changes to a file:
$ git checkout -- <file>
Note: one of the few things in git that can’t be undone!

Introduction to Version Control||29/55

git commands

git reset
git reset: Reset current HEAD to the specified state
Glossary “HEAD”: the current commit that the working tree is based on
reset can change the working tree and/or staging area, but doesn’t change HEAD,
i.e. what commit you’re working from
Remove a file from the staging area (but leave the changes in the working tree):
$ git reset HEAD <file>

Introduction to Version Control||30/55

Beyond the basics: branches

What is a branch?
A git repo is like a tree (technically a directed acyclic graph), and like trees has
branches
More practically, a branch is just a label for a particular commit
Can have lots of different labels on a given commit, i.e. lots of branches all the same
Default first branch is called “master”
You’re not forced to share your local branches with others
Can experiment and explore, then chuck away branches that didn’t work out
Making a new branch is always safe!

Introduction to Version Control||31/55

Beyond the basics: branches

Branches

Introduction to Version Control||32/55

Beyond the basics: branches

Making a new branch
git branch command is normally not what we want
Make a new branch and check the status and log:
$ git checkout -b new_branch
$ git status
$ git log

Switching branches
Switch back to master, check status and log:
$ git checkout master
$ git status
$ git log

Introduction to Version Control||33/55

Beyond the basics: branches

Making changes on a branch
Switch back to your new branch
Create a new file, add some text and save it in your repo
Add and commit this new file
Let’s look at a summary of all our branches:
$ git log --oneline --all --graph
Can you see where master, HEAD and your new branch are?
Switch back to master – what’s happened to your new file?

Introduction to Version Control||34/55

Beyond the basics: branches

Making changes on a branch
$ git checkout <your branch>
Add a new file
$ git add <new file>
$ git commit
$ git log --oneline --all --graph
$ git checkout master
$ ls

Introduction to Version Control||35/55

Moving forward: Merging

Merging
Branches are only really useful if we can get those changes back into our main
branch
Merges are probably the biggest cause of problems, as it can be a tricky problem!
Remember: it’s always safe to make a new branch and try something out there!
Several different ways to do a merge, with differing results

Introduction to Version Control||36/55

Merging

Fast-forwarding
This works when the branch being merged from was forked from the tip of the
branch being merged into
Often the nicest way to merge if it’s possible
^ C <-- branch2
| |
| B
| /

time A <-- branch1

Introduction to Version Control||37/55

Merging

Fast-forwarding
This works when the branch being merged from was forked from the tip of the
branch being merged into
Often the nicest way to merge if it’s possible
^ C <-- branch2 > C <-- branch1, branch2
| | > |
| B > B
| / > |

time A <-- branch1 > A

Introduction to Version Control||38/55

Merging

A simple case
You should have two branches: master and <your branch>
Only difference should be <your branch> has an extra file in it
Very simple to merge this case!
Checkout master and merge your branch
What does the full log look like now?
$ git checkout master
$ git merge <your branch>
$ git log --oneline --all --graph

Introduction to Version Control||39/55

git commands

git merge
git merge: Join two or more development histories together
From the branch you want to merge something into, run
$ git merge <other branch>
If you run into trouble, abort the merge, create a new branch from your “main”
branch and try things out in there
$ git merge --abort
$ git checkout -b test-merge-branch

Introduction to Version Control||40/55

Merging

Non fast-forwarding
If there are any “conflicts” between the two branches, it’s a little trickier
You’ll need to resolve the conflicts, and a special “merge commit” will be created

This is special as it has two parents
Some people/projects prefer to always have a merge commit as this may be easier
to remove a feature if it has multiple commits
^ C <- branch1
| | B <- branch2
| |/

time A

Introduction to Version Control||41/55

Merging

Non fast-forwarding
If there are any “conflicts” between the two branches, it’s a little trickier
You’ll need to resolve the conflicts, and a special “merge commit” will be created

This is special as it has two parents
Some people/projects prefer to always have a merge commit as this may be easier
to remove a feature if it has multiple commits

> D <- branch1 (merge commit)
> |\

^ C > C |
| | B > | B <- branch2
| |/ > |/

time A > A

Introduction to Version Control||42/55

Merging
Fixing conflicts

Conflicts happen when both branches touch the same line(s) in a file
Conflicts are marked with a diff-like syntax
To resolve the conflict, just go to the conflicting files and edit them appropriately
There are lots of tools that can help you with this, e.g. ediff, meld, diff3
<<<<<<< HEAD
line changed in branch1
=======
line changed in branch2
>>>>>>> merging branch

Just delete all the special markers and the lines(s) you don’t want to keep
Sometimes you want some combination of both regions – just edit the lines to keep
what you want
You can bail out of a merge with git merge --abort

Introduction to Version Control||43/55

Merging

Creating conflicts
Make a new file call conflicts.txt with the contents “some words”
Commit this file to master
Now create and checkout a new branch called conflict-branch
Change conflicts.txt to read “some more words”
Commit this file on conflict-branch
Checkout master again and change conflicts.txt to read “some other words”
Commit this file on master
Now try to merge conflict-branch into master
Fix the conflict, save the file

Introduction to Version Control||44/55

Merging
Creating conflicts
$ echo "some words" > conflicts.txt
$ git add conflicts.txt; git commit
$ git checkout -b conflict-branch
$ echo "some more words" > conflicts.txt
$ git add conflicts.txt; git commit
$ git checkout master
$ git log --all --oneline --graph
$ echo "some other words" > conflicts.txt
$ git add conflicts.txt; git commit
$ git merge conflict-branch
Remove conflict markers from conflicts.txt
$ git add conflicts.txt; git commit
$ git log --all --oneline --graph

Introduction to Version Control||45/55

Merging

Rebasing
DANGER! This rewrites history!
This has the biggest potential to cause headaches
Rebasing a branch onto another one means to change the first branch’s “base” to
the new branch
It works by “replaying” the commits on top of the second branch
^ C <- branch1
| | B <- branch2
| |/

time A

Introduction to Version Control||46/55

Merging

Rebasing
DANGER! This rewrites history!
This has the biggest potential to cause headaches
Rebasing a branch onto another one means to change the first branch’s “base” to
the new branch
It works by “replaying” the commits on top of the second branch

> B' <- branch2
^ C > |
| | B > C <- branch1
| |/ > |

time A > A
B' contains (roughly) the same diffs as B

Introduction to Version Control||47/55

Beyond the basics: branches

Stashes
Very often the case that you want to switch branches, but you have made changes
that either clash with the other branch, or you just don’t want to carry over
Stashes are like commits on “anonymous” branches
They save both your staged and unstaged changes, then discard them from your
working tree
Change your file, then stash it
View the stashes with stash list, and re-apply the latest stash with stash
apply

$ git stash
$ git stash list
$ git stash apply

Introduction to Version Control||48/55

Getting started with GitHub

Sign up
Go to http://github.com
Sign up for an account

Make a repository on GitHub
Click the green New button on the left
Give it a name and decide if you want it public or private
Make sure Initialize this repository with a README is unchecked

Also that Add .gitignore and Add a license are None
Click Create repository

Introduction to Version Control||49/55

http://github.com

Getting started with GitHub

Add the remote repository
Follow the instructions on GitHub:

Add the remote
$ git remote add origin https://github.com/<username>/into_to_git.git
$ git push origin master

Introduction to Version Control||50/55

git commands

git push
git push: Update remote refs along with associated objects
Glossary: “remote”: a version of this repository that is located elsewhere
Glossary: “refs”: reference to some git object (normally a branch)
Glossary: “tracking branch”: a local reference to this branch on a remote repo

Introduction to Version Control||51/55

Getting started with GitHub

Getting remote changes
From the main repository page, click the green Add a README button at the
bottom
Name the file README.md and some text
Click the green Commit new file button at the bottom

Don’t forget a nice commit message!
Now we need to get this file in our local version. . .
The quick way:
$ git pull

Introduction to Version Control||52/55

git commands

git pull
git pull: Fetch from and integrate with another repository or a local branch
If the branch has a tracking branch (i.e. is linked to some branch on a remote),
then git pull does the Right Thing
Otherwise, specify remote and branch: git pull <remote> <branch>

Introduction to Version Control||53/55

Random notes

Working with others
git does not enforce a particular way of working with other people
Easiest method is “feature branches”
Everybody works in branches off the main “master” branch
When it’s ready to share with others, make a “pull request”
Other people can check your work
Easy to resolve conflicts

Introduction to Version Control||54/55

Further reading

Git book: https://git-scm.com/book
Atlassian tutorial: https://www.atlassian.com/git/tutorials
Codecademy: https://www.codecademy.com/learn/learn-git

Image credits
openclipart:

https://openclipart.org/detail/16441/box
https://openclipart.org/detail/6902/lockers
https://openclipart.org/detail/219891/readme-fixed

Atlassian

Introduction to Version Control||55/55

