
What’s the deal with Python 3?
Peter Hill

What’s the deal with Python 3?||1/24

Outline

A very brief history of Python
Why Python 3?
The main differences
Cool features
Maintaining compatibility

What’s the deal with Python 3?||2/24

A very brief history of Python
Guido van Rossum started work on Python in 1989

van Rossum is the Benevolent Dictator for Life
First version released in 1990
Python 2.0 released in 2000

Where Python really came into its own
Introduced features like list comprehension and fancy garbage collection

Python 2.6 and 3.0 released in 2008
Fixed lots of problems, but in a backwards incompatible fashion
Many features were simultaneously backported to 2.6

Python 3.1 released in 2009
Fixed some glaring performance problems in 3.0

Python 2.7 released in 2010
Many features from 3.1 backported to 2.7
2.7 last release in 2.x series

Python 3.3 released in 2012
Official end of Python 2 feature releases

Python 2.7 end of life in 2020
What’s the deal with Python 3?||3/24

The Zen of Python

Beautiful is better than ugly
Explicit is better than implicit
Simple is better than complex
Complex is better than complicated
Readability counts
There should be one – and preferably only one – obvious way to do it
Although that way may not be obvious at first unless you’re Dutch

What’s the deal with Python 3?||4/24

Why Python 3?

What’s wrong with Python 2?
Various design decisions hindered improvements
Some features cause of subtle bugs, e.g.

Unicode 1: little distinction between text and bytes
Unicode 2: ê = 1 might work in the interpreter but not in scripts
0777 interpreted as an octal number due to leading 0
input automatically evaluated what the user typed

Some names didn’t follow convention
Fixing these things required changing the meaning of existing code
Python 3 now has a ton more features!

What’s the deal with Python 3?||5/24

Major differences

bytes need to be decoded into str (text)
str are Unicode by default
No distinction between int (machine precision) and long (arbitrary precision)
print is a function rather than a statement
Division of two integers returns a float by default
One type of class rather than two (!)
Removed some synonyms for functions: e.g. Python 2 has both != and <> for “not
equals”
Many functions now return iterators rather than lists
Relative imports must be explicit
New keywords: with, as, True, False, None
Better exception handling

What’s the deal with Python 3?||6/24

Major differences

bytes need to be decoded into str (text)
str are Unicode by default
No distinction between int (machine precision) and long (arbitrary precision)
print is a function rather than a statement
Division of two integers returns a float by default
One type of class rather than two (!)
Removed some synonyms for functions: e.g. Python 2 has both != and <> for “not
equals”
Many functions now return iterators rather than lists
Relative imports must be explicit
New keywords: with, as, True, False, None
Better exception handling

What’s the deal with Python 3?||7/24

print function

Why?!
Weird syntax for no newline: print a,
Weird syntax for printing somewhere else: print >> output, a
Difficult to add new syntax: how to change the separator?
Not very flexible

What’s the deal with Python 3?||8/24

print function

Useful things
Change the separator/newline: print("a", "b", sep="...", end="")
Can be used in new contexts: map(print, "abc")
Can be overridden: (don’t do this!)
log = []
old_print = print
def print(*args, **kwargs):

log.append(' '.join(args))
old_print(*args, **kwargs)

or specialised:
my_print = lambda *args, **kwargs: print(*args, **kwargs, sep=":")

What’s the deal with Python 3?||9/24

Digression: expression vs statement

Expression
Has a value: 2 / 3
Can have a name: cats = ["Garfield", "Maru", "Ziggy"]
Can pass them to functions: is_square(2 + 2)
Limited to: identifiers (cats), literals (2, "Ziggy") and operators (+, ())

Statement
Made of expressions and syntax
Makes up an executable line: if cats is not None:
Can’t be given a name: assign_f = (f = 1)
Can’t be passed to functions: is_square(if)

What’s the deal with Python 3?||10/24

Division

The first major trip hazard
In Python 2: 2/3 == 0 and 3/2 == 1

Sometimes surprising, but sometimes what you want
In Python 3: 2/3 == 0.666... and 3/2 == 1.5

Less surprising, unless you are a C programmer
If you want integer division, use // instead:

2//3 == 0 and 3//2 == 1 for Python 2 and 3
Rounding is down towards negative infinity

What’s the deal with Python 3?||11/24

Iterators and views

The other major trip hazard
Many functions now return iterators or views
These are lightweight, memory-efficient objects
Iterators only get evaluated when you try to use them and become empty afterwards
>>> cats = {"Garfield": False, "Maru": True, "Ziggy": True}
>>> real_cats = filter(is_real, cats)
<filter at 0x7fc05689bba8> in Python 3
[('Maru', True), ('Ziggy', True)] in Python 2
>>> list(real_cats) # Convert to a list
[('Maru', True), ('Ziggy', True)]
>>> list(real_cats) # We've already "consumed" the filter
[]

What’s the deal with Python 3?||12/24

Iterators and views

Views
Dynamic view into an object
Reduces memory footprint
>>> cat_names = cats.keys()
>>> print(cat_names)
["Garfield", "Maru", "Ziggy"]
>>> cats["Pink Panther"] = False
>>> print(cat_names)
["Garfield", "Maru", "Ziggy", "Pink Panther"]
["Garfield", "Maru", "Ziggy"] in Python 2

What’s the deal with Python 3?||13/24

Relative imports
A problem for packages

Take a simple package like this:
blackholes/
|- __init__.py
|- relativity.py
. . . use one file from another:
__init__.py
import relativity
And now try to use the package:
import blackholes
In Python 2 this works due to the implicit relative import
But this caused all sorts of headaches, like what if there’s another relativity.py
in your PYTHONPATH?

What’s the deal with Python 3?||14/24

Relative imports

Python 3 is more explicit
In Python 3 we get an error:
Traceback (most recent call last):

File "<string>", line 1, in <module>
File "/tmp/blackholes/__init__.py", line 1, in <module>

import relativity
ModuleNotFoundError: No module named 'relativity'
To fix this for Python 3, we need to be explicit about which relativity we want
to import:
__init__.py
from . import relativity
This will then work properly

What’s the deal with Python 3?||15/24

Exceptional exceptions
Catching multiple exceptions
>>> try:
... 1/0
... except TypeError, ZeroDivisionError:
... print("Exception suppressed")
...
Traceback (most recent call last):

File "<stdin>", line 2, in <module>
ZeroDivisionError: integer division or modulo by zero
>>> try:
... 1/0
... except (TypeError, ZeroDivisionError):
... print("Exception suppressed")
...
Exception suppressed

What’s the deal with Python 3?||16/24

Exceptional exceptions

Catching multiple exceptions
>>> try:
... 1/0
... except TypeError, ZeroDivisionError:

File "<stdin>", line 3
except TypeError, ZeroDivisionError:

^
SyntaxError: invalid syntax

What’s the deal with Python 3?||17/24

Exceptional exceptions

Exceptions during exceptions (inceptions)
>>> try:
... 1/0
... except Exception:
... logging.exception("Something went wrong")
...
Traceback (most recent call last):

File "<stdin>", line 4, in <module>
NameError: name 'logging' is not defined

What’s the deal with Python 3?||18/24

Exceptional exceptions
Exceptions during exceptions (inceptions)
>>> try:
... 1/0
... except Exception:
... logging.exception("Something went wrong")
...
Traceback (most recent call last):

File "<stdin>", line 2, in <module>
ZeroDivisionError: division by zero

During handling of the above exception, another exception occurred:

Traceback (most recent call last):
File "<stdin>", line 4, in <module>

NameError: name 'logging' is not defined
What’s the deal with Python 3?||19/24

Features in 3 not in 2
f-strings (3.6)
print("Hello {}".format(name)) # Python 2.7 and 3.5
print(f"Hello {name}") # Python 3.6

Dictionaries remember insertion order (3.6)
Used to be an implementation detail
Now part of the specification
Also improved memory usage and speed

Infix matrix multiplication operator (3.5)
S = dot((dot(H, beta) - r).T,

dot(inv(dot(dot(H, V), H.T)), dot(H, beta) - r))
becomes
S = (H @ beta - r).T @ inv(H @ V @ H.T) @ (H @ beta - r)

What’s the deal with Python 3?||20/24

Features in 3 not in 2

More general unpacking (3.5)
>>> print(*[1], *[2], 3, *[4, 5])
1 2 3 4 5

>>> def fn(a, b, c, d):
... print(a, b, c, d)
...

>>> fn(**{'a': 1, 'c': 3}, **{'b': 2, 'd': 4})
1 2 3 4

What’s the deal with Python 3?||21/24

Features in 3 not in 2
Underscores in numeric literals (3.6)
>>> 1_000_000_000_000_000
1000000000000000
>>> 0x_FF_FF_FF_FF
4294967295

Easier debugging (3.7)
breakpoint() drops you into a debugger

Type hinting (since 3.0, but useful in 3.5)
Specify types of function arguments and return values
Still need an external tool to verify
def greeting(name: str) -> str:

return 'Hello ' + name
What’s the deal with Python 3?||22/24

Advice

Write new projects in Python 3.5+!

Don’t bother trying to be backwards compatible

But if you need to (official advice):
1 Only worry about supporting Python 2.7
2 Make sure you have good test coverage (coverage.py can help; pip install

coverage)
3 Learn the differences between Python 2 & 3
4 Use Futurize (or Modernize) to update your code (e.g. pip install future)

If you really can’t move to 3,

from __future__ import print_function
from __future__ import division

What’s the deal with Python 3?||23/24

Further reading

http://python-
notes.curiousefficiency.org/en/latest/python3/questions_and_answers.html
https://docs.python.org/3/howto/pyporting.html
https://python-future.org/

What’s the deal with Python 3?||24/24

