
Working with others
Version Control Part II

Peter Hill

Working with others||1/23

Outline

Recap
Workflows
Merge requests

Working with others||2/23

Recap part 1

Glossary
repository/repo: a project under version control
diff: a set of changes between two files or versions of files
commit: a saved “box of diffs” in the repo, or snapshot of the repo at a given time
working tree: a project as it currently looks like on disk (i.e. what you see with ls
or in your editor)
index: the “staging area” or box of diffs

Working with others||3/23

The gist of git

The building blocks: diffs

A simple diff

Shows differences between individual lines
Lines beginning with “-” have been removed
Lines beginning with “+” have been added
Changed lines are shown as removal plus
addition

Working with others||4/23

The gist of git
Add diffs to a staging area

Add diffs to stage

Working with others||5/23

The gist of git
Commit the staging area to the repository

Commit changes to the repository

Working with others||6/23

The gist of git
Commit the staging area to the repository

Commit changes to the repository

Working with others||7/23

This gist of git

Sync with other people’s repositories

Sync local and remote repositories

Working with others||8/23

The basic commands

$ git status # Current status of working tree
$ git add <file> # Stage a file
$ git commit # Make a commit
$ git log # View history
$ git checkout -b <branch> # Checkout a new branch
$ git checkout <branch> # Checkout an existing branch
$ git merge <branch> # Merge a branch into this one

Working with others||9/23

Merging
Fixing conflicts

Conflicts happen when both branches touch the same line(s) in a file
Conflicts are marked with a diff-like syntax
To resolve the conflict, just go to the conflicting files and edit them appropriately
There are lots of tools that can help you with this, e.g. ediff, meld, diff3
<<<<<<< HEAD
line changed in branch1
=======
line changed in branch2
>>>>>>> merging branch

Just delete all the special markers and the lines(s) you don’t want to keep
Sometimes you want some combination of both regions – just edit the lines to keep
what you want
You can bail out of a merge with git merge --abort

Working with others||10/23

More Recap

Anything else needs covering?

Working with others||11/23

Getting started with Bitbucket

Signing up
Sign up with York email address to get academic account
Two steps: sign up for Bitbucket account, and then get a username

I know, it’s weird

Working with others||12/23

Getting started with Bitbucket

Make a repository on Bitbucket
Click the big + on the left
Click “Repository”
Give it a name and decide if you want it public or private
Make sure “Include a README” is unticked
Click “Create repository”

Add the remote repository
Follow the instructions on Bitbucket:

Add the remote
$ git remote add origin https://bitbucket.org/<username>/<reponame>.git
$ git push origin master

Working with others||13/23

git commands

git push
git push: Update remote refs along with associated objects
Glossary “remote”: a version of this repository that is located elsewhere
Glossary “refs”: reference to some git object (normally a branch)
Glossary: “tracking branch”: a local reference to this branch on a remote repo

Working with others||14/23

Getting started with Bitbucket

Getting remote changes
From the three-dot menu in the top right, click “Add file”
Name the file “README.md” and some text
Click “Commit” in the bottom right
Now we need to get this file in our local version. . .
The quick way:
$ git pull

Working with others||15/23

git commands

git pull
git pull: Fetch from and integrate with another repository or a local branch
If the branch has a tracking branch (i.e. is linked to some branch on a remote),
then git pull does the Right Thing
Otherwise, specify remote and branch: git pull <remote> <branch>

Working with others||16/23

Ways of working with others
“Mainline”

Everything straight into master
Ok for very small teams or Google

Feature branches
Changes made in separate branches
Good for teams
Pull request for merging from your branch into another branch

Fork
A fork is a copy of a repo
Good for open source projects without fixed developers
Pull request for merging from your repo into theirs

Working with others||17/23

Gitflow
The whole kit and caboodle

The big kahuna: gitflow

Working with others||18/23

Pull requests

Pull/merge requests are great
Get a chance for code review

Super important!
Can run tests automatically

Tests are great, automatic tests are better
Lots of services for running tests automatically

Jenkins, Travis, Bitbucket pipelines

Working with others||19/23

Forking
Fork the example repo:
https://bitbucket.org/ZedThree/coding-club-pull-request-tutorial

Big plus on the left hand side, at the bottom
Clone it to your computer
Run pip3 install --user -r requirements.txt
Run pytest to check everything works
Add upstream as a remote

You don’t have write access to upstream but you can pull changes
Make a new branch
Add a file called <your_name>.py, and a test file, test_<your_name>.py
Add a simple function and test

See test_simple_calc.py for example
Run pytest to check it all still works
Push to your repo
Go to upstream and open a pull request
Review your neighbour’s PR

Working with others||20/23

Dealing with problems

Quick and dirty
Looked at merge conflicts before
But now trickier problem: conflicts on same branch!
Can try git pull --rebase
Will try to rebase your commits on top of the remote ones
If that goes wrong: git rebase --abort

Working with others||21/23

Dealing with problems

A bit more complicated
You’ve started working on master instead of my_branch
Now you and origin have made lots of commits
Find the commit where you diverged, then:

$ git checkout -b temp_branch
$ git checkout master
$ git reset --hard <commit>
$ git pull
$ git merge temp_branch

Working with others||22/23

The universal “get me out of trouble” solution

This will (almost) always get you out of sticky situation
$ git checkout -b wip_branch
$ git add <changes>
$ git commit # These first three if necessary
$ git checkout <problem branch>
$ git checkout -b fix_problem
<do whatever it was you were trying to do until it works>
$ git branch --move <problem branch> <temp name>
$ git branch --move fix_probem <problem branch>

Working with others||23/23

