
Object-Oriented Programming
Peter Hill

Object-Oriented Programming|June 2018|1/29

Outline

What is Object-Oriented Programming?
Why use it?
General concepts of OOP
How to use OOP in Python
How to use OOP in Fortran
How to use OOP in C++

Object-Oriented Programming|June 2018|2/29

Programming Paradigms

Procedural/imperative programming
Series of statements

“Do this then do that”
Call functions (procedures) sequentially that may modify data
Languages: C, C++, Fortran, Python, Matlab

B_field = 0.0
update_B(B_field, x0, y0, current0)
update_B(B_field, x1, y1, current1)

Object-Oriented Programming|June 2018|3/29

Programming Paradigms

Declarative programming
Series of declarations

“I want this thing to be done”
Mostly for databases and optimisation problems
Languages: SQL, Prolog, Make (?)

SELECT SUM(B_field) FROM coils;

Object-Oriented Programming|June 2018|4/29

Programming Paradigms

Functional programming
Series of expressions or chained functions

“This is how you do that”
Pass in data, get different data out: no mutable state!
Languages: Haskell, Python, C++

coils = [(x0, y0, current0), (x1, y1, current1)]
B_field = sum(map(calculate_B, coils))

Object-Oriented Programming|June 2018|5/29

Programming Paradigms

Object oriented programming
Series of verbs acting on nouns

“Do this to that thing”
Objects wrap up both data and functions that operate it
Languages: C++, Python, Fortran, Java

coils = Coils([(x0, y0, current0), (x1, y1, current1)])
B_field = coils.calculate_B()

Object-Oriented Programming|June 2018|6/29

Programming Paradigms

These are all choices
All Turing-complete languages can do everything any other language can. . . it just
might be easier in one language than another (e.g. string manipulation in Fortran is
horrible)

What’s the easiest/best way to map your problem onto a program?
What does your data look like, and what are you doing with it?
Pick the right tool for the right job

OOP probably not well suited to pure data analysis
Declarative programming not well suited to simulations

Object-Oriented Programming|June 2018|7/29

Why use it?

Modular
A Tokamak is made of Coils and Walls
Coils and Walls can be developed separately from each other

Code Reuse
Reuse the Tokamak, Coils and Walls objects in a different code

May map conceptually better
We’re used to dealing with concrete objects in the real world
Can be easier to think about objects interacting with each other than passing
numbers around

Object-Oriented Programming|June 2018|8/29

Why not use OOP?

Problem might not map onto objects
Pure data analysis:

Take data from experiment
Normalise
Apply correction
Calculate derived quantity
Plot graph

Structure of arrays vs array of structures

Object-Oriented Programming|June 2018|9/29

General concepts
Abstraction

Wrap up several concepts into a higher-level abstraction
An example particle code:
ke = calculate_kinetic_energy(mass1, charge1, position1,

velocity1, E_field)
force = coulomb_force(charge1, charge2, position1, position2)
update_position(position1, mass1, charge1, velocity1, force)
We keep passing around the same bundle of information!
Abstract a Particle, wrapping up mass, charge, position, etc., and how to
calculate energy, force, etc.
ke = particle1.kinetic_energy(E_field)
particle1.set_coulomb_force(particle2)
particle1.push()
Reduces cognitive load, freeing up mental energy to think about more important
things

Object-Oriented Programming|June 2018|10/29

General concepts

Encapsulation
An object may need information that the user doesn’t need to care about, or
shouldn’t be able to change
A function that returns the kinetic energy of a Particle, but don’t let the user set
the energy directly
That information can be hidden away as an implementation detail
particle.push() may have some internal work array for doing calculations, but
we don’t care about that
If we change how particle.push() works internally, the user doesn’t even need
to know

Object-Oriented Programming|June 2018|11/29

General concepts
Inheritance

Objects can be a specialisation of another type of object
Classic example:
class Animal:

def talk(self):
pass

class Cat(Animal):
def talk(self):

return "Meow!"

class Dog(Animal):
def talk(self):

return "Woof!"

Object-Oriented Programming|June 2018|12/29

General concepts

Polymorphism
Polymorphism (“many shapes”) allows us to act on different types of objects with
the same function
Classic example:
def make_a_noise(animal):

print(animal.talk())

ziggy = Cat()
ben = Dog()

make_a_noise(ziggy) # Meow!
make_a_noise(ben) # Woof!

Object-Oriented Programming|June 2018|13/29

Ducking-typing vs polymorphism

A brief diversion about typing
Static typing: checked at compile-time (C, Fortran)
void make_a_noise(Animal animal) {

std::cout << animal.talk();
}
This won’t work if animal is not a subtype of Animal
Dynamic typing: checked at runtime (Python)
def make_a_noise(animal):

print(animal.talk())
This will work as long as animal has a talk() method

Object-Oriented Programming|June 2018|14/29

Some terms

Class: The type that defines the data and functions
Object: An instance of a class (i.e. a variable whose type is class)
Attribute/member/component/field: A variable belonging to a class
Method: A function belonging to a class

Object-Oriented Programming|June 2018|15/29

Using OOP in Python

Constructor and self
Often need to initialise an object when we instantiate (create) it
The method that does this is called the constructor
In Python, this is done with __init__ method

Double underscores in Python indicate “magic”
First argument of any method is self: the instance of the class being used
class Animal:

def __init__(self, noise):
self.noise = noise

def talk(self):
return self.noise

Object-Oriented Programming|June 2018|16/29

Using OOP in Python

More about self
Normally passed invisibly:
ziggy = Animal("Meow")
ziggy.talk()

exactly the same as:
Animal.talk(ziggy)
Name self is just convention – in other languages, it may be a keyword (e.g.
this in C++)

Object-Oriented Programming|June 2018|17/29

Using OOP in Python
Operators
class RationalNumber:

def __init__(self, numerator, denominator):
self.numerator = numerator
self.denominator = denominator

def __str__(self):
return "{}/{}".format(self.numerator,

self.denominator)

def __add__(self, other):
numerator = self.numerator * other.denominator \

+ other.numerator * self.denominator
denominator = self.denominator * other.denominator
return RationalNumber(numerator, denominator)

Object-Oriented Programming|June 2018|18/29

Using OOP in Python
Using the RationalNumber class
>>> half = RationalNumber(1, 2)
>>> third = RationalNumber(1, 3)
>>> print("{} + {} = {}".format(half, third, half+third))
1/2 + 1/3 = 5/6

Other operators
Numeric operations:

__sub__, __mul__, __div__
Comparison:

__eq__, __lt__, __gt__
Fancier features:

__enter__, __exit__, __getitem__, __iter__

Object-Oriented Programming|June 2018|19/29

Using OOP in Fortran
Basic Animals “derived type”
module animal_mod

implicit none
type :: AnimalType

character(len=:), allocatable, private :: noise
contains

procedure :: talk
end type AnimalType

contains
function talk(this)

class(AnimalType), intent(in) :: this
character(len=:), allocatable :: talk
talk = this%noise

end function
end module

Object-Oriented Programming|June 2018|20/29

Using OOP in Fortran

Using the type
Fortran defines a default “structure constructor” that initialises all the members in
order

program animals
use animal_mod
implicit none
type(AnimalType) :: ziggy

ziggy = AnimalType("Meow")
print*, ziggy%talk() ! Meow

end program animals

Object-Oriented Programming|June 2018|21/29

Using OOP in Fortran
Defining our own constructor

Overload the type name
interface AnimalType

module procedure new_animal_type
end interface
...
function new_animal_type(noise) result(this)

type(AnimalType), intent(out) :: this
character(len=*), intent(in) :: noise
this%noise = '"' // noise // '!"'

end function
...
print*, ziggy%talk() ! "Meow!"

Object-Oriented Programming|June 2018|22/29

Using OOP in Fortran
Operators
module rational_mod

type RationalNumber
integer :: numerator, denominator

contains
private
procedure :: rational_add
generic, public :: operator(+) => rational_add

end type RationalNumber

contains
...

Object-Oriented Programming|June 2018|23/29

Using OOP in Fortran
Operators. . .

...
function rational_add(this, other)

class(RationalNumber), intent(in) :: this, other
type(RationalNumber) :: rational_add
integer :: numerator, denominator

numerator = this%numerator * other%denominator &
+ other%numerator * this%denominator

denominator = this%denominator * other%denominator

rational_add = RationalNumber(numerator, denominator)
end function rational_add

end module rational_mod

Object-Oriented Programming|June 2018|24/29

Using OOP in Fortran

Operators. . .
program rational_numbers

use rational_mod
implicit none
type(RationalNumber) :: half, third, sum
half = RationalNumber(1, 2)
third = RationalNumber(1, 3)
sum = half + third

print('(I0,A,I0)'), sum%numerator, "/", sum%denominator
end program rational_numbers

Object-Oriented Programming|June 2018|25/29

Using OOP in Fortran

Pretty-printing
SUBROUTINE my_write_formatted (var,unit,iotype,vlist,iostat,iomsg)
dtv-type-spec,INTENT(IN) :: var
INTEGER,INTENT(IN) :: unit
CHARACTER(*),INTENT(IN) :: iotype
INTEGER,INTENT(IN) :: vlist(:)
INTEGER,INTENT(OUT) :: iostat
CHARACTER(*),INTENT(INOUT) :: iomsg
END

Object-Oriented Programming|June 2018|26/29

Using OOP in C++
RationalNumbers again
class RationalNumber:
public:

int numerator, denominator;

RationalNumber(int numerator, int denominator) :
numerator(numerator), denominator(denominator) {}

RationalNumber operator+(const RationalNumber& other) {
...
return RationalNumber(numerator, denominator);

}
};

Object-Oriented Programming|June 2018|27/29

Using OOP in C++

RationalNumbers again
#include <iostream>
#include "RationalNumbers.hxx"

int main() {
RationalNumber half{1, 2}, third{1, 3}, sum;
sum = half + third;
std::cout << sum.numerator << "/" << sum.denominator << "\n";

}

Object-Oriented Programming|June 2018|28/29

Conclusions

Object-oriented programming is a way to wrap up data and functions that operate
on that data
Can be a good mental fit for lots of problems in physics
OOP encourages modular code that can be reused
Four “pillars”:

Abstraction
Encapsulation
Inheritance
Polymorphism

Object-Oriented Programming|June 2018|29/29

