
Common Lisp - The programmable
programing language

Ben Dudson

Common Lisp - The programmable programing language|2018|1/33

The Lisp family

There are many different Lisp languages and varieties of Lisp including:

Common Lisp - ANSI standard 1984 - 1994, multiple implementations
Racket - Scheme descendant, active community
Clojure - Runs in the Java Virtual Machine
Emacs lisp - Extension language for Emacs
GNU Guile - Extension language

Honorable mention:

Julia – Numerical/scientific focus, lots of Lisp influence

Common Lisp - The programmable programing language|2018|2/33

What is (Common) Lisp?
Descendant of Lisp, developed ca. 1956 by John McCarthy (MIT, AI researcher) it is:

Dynamic, compiled, strongly typed, multi-threaded, garbage collected, . . .

ANSI standardised, with several high-quality implementations

Many of the innovative features of Lisp have been adopted by other languages, so its use
as a high-level language has been largely replaced by e.g. python.

Lisp still has a unique combination of features:

Excellent interactive, incremental development

One of the most flexible object systems available, CLOS and MOP

A quite unusual error handling system, with conditions and restarts

Powerful macro systems for defining new language features

Common Lisp - The programmable programing language|2018|3/33

Why learn Common Lisp?

1. Different kind of programming language: symbolic
Symbols are “first class” objects, like numbers. They can be created, manipulated,
stored and evaluated

2. A minimal but flexible syntax
The core of the language is small, 7 - 25 “special” forms
Everything else is done by manipulating code into these forms
Gives you the power to define the language you want to use
Encourages programs made from many small pieces

3. Many different styles of programming have been implemented in Lisp:
Object oriented
Functional
Logic
Nondeterministic
. . .

Common Lisp - The programmable programing language|2018|4/33

Some applications

Lots of planning tools and expert systems
DART (US military)
ITS (Airline, now Google)
Cyc
NASA planning MARS pathfinder

Onboard computers
NASA Deepspace 1 probe (1998-2001) patched with aid of lisp REPL
Roomba vacuum cleaner

Computer algebra
Maxima, developed from Macsyma (Project MAC, 1968-1982)
Axiom (Scratchpad, IBM 1971)

Quantum computing
Rigetti computing’s Quantum Virtual Machine
D-wave systems

Common Lisp - The programmable programing language|2018|5/33

Development environment

Online testing (today):
https://ideone.com/
Includes SBCL (native compiler) and CLISP (bytecode)

SLIME: The most widely used environment in Emacs.
Includes documentation, interactive debugging, profiling, tracing, inspection, . . .
rainbow-delimiters and paredit useful for braces
Basic support for mixing code, outputs, equations etc. using org-mode

Jupyter Notebook: cl-jupyter
Relatively basic, but functional.
No real support for debugging, inspection, profiling etc.
Get the benefits of a notebook

See the Lisp Cookbook, https://lispcookbook.github.io

Common Lisp - The programmable programing language|2018|6/33

https://common-lisp.net/project/slime/
https://github.com/fredokun/cl-jupyter

Through the looking glass (1/4)

Lets start with something simple but familiar

for i in range(10):
if i % 2 == 0:

print("{0} is even".format(i))
else:

print("{0} is odd".format(i))

0 is even
1 is odd
2 is even
...

Common Lisp - The programmable programing language|2018|7/33

Through the looking glass (2/4)

The conditional if is really a kind of function:
if(test, run-if-true, run-if-false)

. . . and so is the for loop:
for(variable, range, code-to-run)

. . . in fact (almost) everything is a kind of function!

Common Lisp - The programmable programing language|2018|8/33

Through the looking glass (3/4)

so we could write our code as
for(i, 10,

if(i % 2 == 0,
print("{0} is even".format(i)),
print("{0} is odd".format(i))))

Whilst we’re at it, both % and == are functions:

%(number, divisor) ==(left, right)
for(i, 10,

if(==(%(i, 2), 0),
print("{0} is even".format(i)),
print("{0} is odd".format(i))))

Common Lisp - The programmable programing language|2018|9/33

Through the looking glass (4/4)

Now for the final leap. . . The function to call can be put inside the brackets
(for, i, 10,

(if, (== (%, i, 2), 0),
(print, "{0} is even".format(i)),
(print, "{0} is odd".format(i))))

Then we tidy up the unnecessary commas and do some renaming:
(dotimes (i 10)

(if (= (mod i 2) 0)
(format t "~a is even~%" i)
(format t "~a is odd~%" i)))

Voila! Common Lisp.

Common Lisp - The programmable programing language|2018|10/33

LISt Processing

In Lisp flow control, loops, and even function and class definitions, are all represented as
a list
(function arg1 arg2 ...)

The first element is the function, followed by the arguments.

Since lists can be manipulated by Lisp code, code can also be manipulated (it is
homoiconic)
Before code is compiled, arbitrary lisp code (entire programs) can transform it
This makes lisps unique in their ability to define Domain Specific Languages
The language can be changed to fit the problems you want to solve

Common Lisp - The programmable programing language|2018|11/33

Everything is an expression

In Lisp everything is an expression which returns a value (though it may be NIL)

In Python this is ok (x + (y + 1)) but not (x + (if is_true(): 1 else:
2)) because if is a statement not an expression

In Lisp this would be (+ x y 1) and (+ x (if (istrue) 1 2))

For larger expressions we can define local variables and functions, putting together code
in a very flexible way
(+ x (let ((y (random 10)))

(format t "Chosen: ~a~%" y)
(some-function y)))

(from https://practicaltypography.com/why-racket-why-lisp.html)

Common Lisp - The programmable programing language|2018|12/33

Get lisping!
Try evaluating the following expressions:
> (+ 1 2 3 4)
> (+ (* 2 3) (* 4 5))
> (list 2 3)
> (list (list 1 2) (list 3 4))
> (quote (1 2))
> (quote (+ 1 2 3 4))
> '(1 2)

Then:

1. Write an expression to make a nested list (1 (2 (3 4)))
2. Calculate

2 * sin(3.2) - 1 ; => -1.1167483

Common Lisp - The programmable programing language|2018|13/33

Solutions
1. Either

(list 1 (list 2 (list 3 4)))

or
(quote (1 (2 (3 4))))

2.

(- (* 2 (sin 3.2)) 1)

which is easier to read if written:
(- (* 2

(sin 3.2))
1)

Common Lisp - The programmable programing language|2018|14/33

Functions

Functions can be defined using defun
(defun f (a x b)

(+ b (* a x)))

or created without a name and passed around
(lambda (a x b)

(+ b (* a x)))

so we can create a function and then apply it
(funcall (lambda (x) (+ 2 x)) 3) ; => 5

Common Lisp - The programmable programing language|2018|15/33

Common Lisp is often compiled (e.g. SBCL)

(defun f (a x b)
(+ b (* a x)))

To see the byte or assembly code:
(disassemble #'f)

Code can be optimised if given types:
(defun f (a x b)

(declare (optimize (speed 3) (safety 0))
(type single-float a x b))

(+ b (* a x)))

Try disassembling again. . .

Common Lisp - The programmable programing language|2018|16/33

Functions of functions

Many of the Common Lisp standard functions take other functions as input e.g.
(mapcar (lambda (x) (+ 2 x)) '(1 2 3)) ; => (3 4 5)

(reduce #'+ '(1 2 3)) ; => 6

(sort '(1 2 3 4) #'>) ; => (4 3 2 1)

Common Lisp - The programmable programing language|2018|17/33

Exercise 2: Functions

1. Define a function to square numbers e.g
(square 3) ; => 9

2. Calculate the sum of the squares of the numbers 1 to 9 (= 285)

You can use:
(defun range (n)

(loop for i from 0 below n collecting i))

Common Lisp - The programmable programing language|2018|18/33

Solutions
(defun square (x) (* x x))

(reduce #'+
(mapcar #'square

(range 10)))

or
(loop for i from 0 below 10 summing (* i i))

or
(defun sum-squares (numbers)

(if numbers
(+ (square (first numbers))

(sum-squares (rest numbers)))
0))

(sum-squares (range 10))
Common Lisp - The programmable programing language|2018|19/33

Common Lisp Object System (CLOS)

CLOS is quite different from the object system in Java/C++ or Python.
(defstruct circle

radius)

(defparameter a (make-circle :radius 1.2))

Methods are defined outside classes, and can be specialised for particular types (multiple
dispatch):
(defmethod area ((shape circle))

(* pi (expt (circle-radius shape) 2)))

(area (make-circle :radius 2))
; => 12.566370614359172d0

Common Lisp - The programmable programing language|2018|20/33

Exercise 3: Areas of shapes

Define a structure called rectangle with a length and a height, and an area
method.

Create a list of circles and rectangles:
(defparameter shapes

(list
(make-rectangle :length 0.5 :height 2.0)
(make-circle :radius 3.1)
(make-rectangle :length 4.2 :height 1.7)))

Calculate the total area of all the shapes in the list (38.33070418890327)

Common Lisp - The programmable programing language|2018|21/33

Exercise 3: Solution part 1

(defstruct rectangle
length
height)

(defmethod area ((shape rectangle))
(* (rectangle-length shape) (rectangle-height shape)))

Common Lisp - The programmable programing language|2018|22/33

Exercise 3: Solution part 2
Some possible solutions
(reduce #'+ (mapcar #'area shapes)) ;; Map shapes to areas, then sum

(defun sum-shapes (shapes) ;; Recursive function
(if shapes

(+ (area (first shapes))
(sum-shapes (rest shapes)))

0.0))
(sum-shapes shapes)

(loop for s in shapes summing (area s))

(let ((sum 0.0)) ;; Accumulate the sum of the areas
(dolist (s shapes)

(incf sum (area s)))
sum)

Common Lisp - The programmable programing language|2018|23/33

Macros

Macros are functions which transform code before it is compiled.

Some languages have mechanisms for doing this, but usually use a different syntax
e.g. C preprocessor, C++ templates
To generate code a separate tool is often needed
Lisp macros are lisp functions, and can run arbitrary lisp code (including other
macros).

e.g. All the looping constructs loop, dolist, dotimes, . . . are macros. Try
(macroexpand '(loop for s in shapes summing (area s)))

Common Lisp - The programmable programing language|2018|24/33

Example

For quick tests, it would be nice if we could write something like
(defun square (x)

(* x x))

(example (square 3) => 9)

and if (square 3) returned something different get a printed error like

Expected (square 3) => 9
but got 3

Common Lisp - The programmable programing language|2018|25/33

Example macro version 1

Just write the code we want in a backtick ` and insert bits of code where we need them
by using , (or ,@ to splice in lists)
(defmacro example (code arrow result)

`(if (equalp ,code ,result)
t
(format t "Expected ~a => ~a~% but got ~a"

',code ,result ,code)))

Common Lisp - The programmable programing language|2018|26/33

Example macro version 2

Avoids evaluating expressions more than once
(defmacro example (code arrow result)

`(let ((code-result ,code)
(expected ,result))

(if (equalp code-result expected)
t
(format t "Expected ~a => ~a~% but got ~a"

',code expected code-result))))

Common Lisp - The programmable programing language|2018|27/33

Example macro version 3
Doesn’t accidentally capture symbols
(defmacro example (code arrow result)

(declare (ignore arrow))
(let ((code-result (gensym))

(expected (gensym)))
`(let ((,code-result ,code)

(,expected ,result))
(if (equalp ,code-result ,expected)

t
(format t "Expected ~a => ~a~% but got ~a"

',code ,expected ,code-result)))))

Note: Not really needed here, but necessary in general. Racket and other lisps have a
different approach to “hygenic” macros

Common Lisp - The programmable programing language|2018|28/33

Exercise 4: Macros
Backquote examples:
> `(a (+ 1 2) c)
> `(a ,(+ 1 2) c)
> `(a (list 1 2) c)
> `(a ,(list 1 2) c)
> `(a ,@(list 1 2) c)

Define a macro my-and that takes two expressions and evaluates the first. If the
first evaluates to nil, return nil. Otherwise evaluate the second expression and
return its result.

Write a macro which evaluates an expression a random number of times between 0
and 10

(random-times (format t "hello~%"))

(Hint: See dotimes earlier)
Common Lisp - The programmable programing language|2018|29/33

Solution part 1

(defmacro my-and (a b)
`(if ,a

,b
nil))

or
(defmacro my-and (a b)

`(when ,a
,b))

Common Lisp - The programmable programing language|2018|30/33

Solution part 2

(defmacro random-times (expr)
`(dotimes (i (random 10))

,expr))

or using a gensym to avoid introducing variable i:
(defmacro random-times (expr)

(let ((sym (gensym)))
`(dotimes (,sym (random 10))

,expr)))

Common Lisp - The programmable programing language|2018|31/33

Reader macros
Some dialects (including Common Lisp and Racket) have reader macros.

Transform input text as it is read, turning it into lisp expressions
The transformation code can be arbitrary lisp functions, macros etc.

Some example uses:

Infix notation
#i(result[i j] += A[i k] * B[k j])

List comprehensions
{i j || i <- '(1 2 3 4 5 6 7 8) j <- '(A B)} ;=> ((1 A) (2 B))

Reading JSON
[{"foo": 1}, "bar", {"baz": [2, 3]}]

Creating your own language!
Common Lisp - The programmable programing language|2018|32/33

https://github.com/rigetticomputing/cmu-infix
https://gist.github.com/vseloved/4432594#file-listcomp-lisp
https://gist.github.com/chaitanyagupta/9324402

Further reading

Getting started

Practical Common Lisp: http://www.gigamonkeys.com/book/
Lisp in small pieces: http://lisp.plasticki.com
Debugging Common Lisp: http://malisper.me/debugging-lisp-part-1-recompilation/
Common Lisp Cookbook https://lispcookbook.github.io/

Getting started (other lisps)

The Racket Guide: http://docs.racket-lang.org/guide/index.html
Structure and Interpretation of Computer Programs http://mitpress.mit.edu/sicp/

Other links

Common Lisp HyperSpec. Google “CLHS function” for reference page
European Lisp Symposium with slides and videos about current projects

Common Lisp - The programmable programing language|2018|33/33

http://www.lispworks.com/documentation/HyperSpec/Front/index.htm
https://european-lisp-symposium.org

