Physics Coding Club

The Fast Fourier Transform
Phil Hasnip
phil.hasnip@york.ac.uk

Fourier Series

Any 'sensible' 1D periodic function with period L may be expressed as a Fourier series:

$$
f(x)=\sum_{G=0}^{\infty}\left[a_{G} \sin \left(\frac{2 \pi i G x}{L}\right)+b_{G} \cos \left(\frac{2 \pi i G x}{L}\right)\right]
$$

where i is the imaginary number, G is an integer and a_{G} and b_{n} are coefficients (real, for real functions).
Often convenient to rewrite as complex exponentials:

$$
f(x)=\sum_{G=-\infty}^{\infty} c_{G} e^{\frac{2 \pi i G x}{L}}
$$

where c_{G} are the *Fourier coefficients* (usually complex).

Derivatives of periodic functions

The derivatives of Fourier series are also Fourier series:

$$
\begin{aligned}
f(x) & =\sum_{G=-\infty}^{\infty} c_{G} e^{\frac{2 \pi i G x}{L}} \\
\Rightarrow \frac{d f}{d x} & =\sum_{G=-\infty}^{\infty} \frac{2 \pi i G}{L} c_{G} e^{\frac{i \pi G x}{L}} \\
\frac{d^{2} f}{d x^{2}} & =\sum_{G=-\infty}^{\infty}\left(-\frac{4 \pi^{2} G^{2}}{L^{2}}\right) c_{G} e^{\frac{2 \pi i G x}{L}}
\end{aligned}
$$

So what? Differential equations

$$
\frac{d^{2} f}{d x^{2}}+f=0
$$

becomes

$$
\sum_{G=-\infty}^{\infty}\left[\left(-\frac{4 \pi^{2} G^{2}}{L^{2}}\right)+1\right] c_{G} e^{\frac{i \pi G x}{L}}=0
$$

i.e.

$$
\begin{aligned}
G^{2} & =\frac{L^{2}}{4 \pi^{2}} \\
\Rightarrow G & = \pm \frac{L}{2 \pi}
\end{aligned}
$$

or $c_{G}=0$.

Fourier transform

For a given function $f(x)$, we can find any particular c_{m} using:

$$
c_{m}=\frac{1}{2 \pi} \int_{-L}^{L} f(x) e^{-\frac{i \pi m x}{L}} d x
$$

These coefficients are often called the *Fourier transform* of $f(x)$, and written as \tilde{f}_{G} or F_{G}.

The Discrete Fourier transform

Suppose $L=1$ and our periodic function is sampled on a regular grid with N points. Our sampled function is a discrete function and we have:

$$
\begin{aligned}
f_{x} & =\frac{1}{N} \sum_{G=0}^{N-1} F_{G} e^{2 \pi i G x} \\
F_{G} & =\sum_{x=0}^{N-1} f_{x} e^{-2 \pi i G x} d x
\end{aligned}
$$

So what? Convolutions

Convolutions happen a lot in science.

$$
p_{x}=(f * h)_{x}=\sum_{x^{\prime}} f_{x^{\prime}} h_{x-x^{\prime}}
$$

Sum over N points for each x value, so need N^{2} operations in total.
But the Fourier transform \tilde{p}_{G} is:

$$
P_{G}=F_{G} H_{G}
$$

Only need 1 multiplication for each G value, so need N operations in total. So if we have the Fourier transforms of f and h, we can quickly compute the Fourier transform of p...

FFT in practice

This only works if we can do the Fourier transform fast than N^{2}...

Example: 2-point discrete transform

Sample function f_{x} in real-space at 2 points. Want to Fourier transform to get F_{G} the 2 Fourier components.

$$
\begin{aligned}
& F_{1}=f_{1}+f_{2} \\
& F_{2}=f_{1}-f_{2}
\end{aligned}
$$

Example: 4-point discrete transform

Sample function f_{x} in real-space at 2 points. Want to Fourier transform to get F_{G} the 2 Fourier components.

$$
\begin{aligned}
& F_{1}=f_{1}+f_{2}+f_{3}+f_{4} \\
& F_{2}=f_{1}+i f_{2}-f_{3}-i f_{4} \\
& F_{3}=f_{1}-f_{2}+f_{3}-f_{4} \\
& F_{4}=f_{1}-i f_{2}-f_{3}+i f_{4}
\end{aligned}
$$

This looks like N^{2} work, but if we gather terms...

Example: 4-point discrete transform

Sample function f_{x} in real-space at 2 points. Want to Fourier transform to get F_{G} the 2 Fourier components.

$$
\begin{aligned}
F_{1} & =f_{1}+f_{2}+f_{3}+f_{4} \\
& =\left(f_{1}+f_{3}\right)+\left(f_{2}+f_{4}\right) \\
F_{2} & =f_{1}+i f_{2}-f_{3}-i f_{4} \\
& =\left(f_{1}-f_{3}\right)+i\left(f_{2}-f_{4}\right) \\
F_{3} & =f_{1}-f_{2}+f_{3}-f_{4} \\
& =\left(f_{1}+f_{3}\right)-\left(f_{2}+f_{4}\right) \\
F_{4} & =f_{1}-i f_{2}-f_{3}+i f_{4} \\
& =\left(f_{1}-f_{3}\right)-i\left(f_{2}+f_{4}\right)
\end{aligned}
$$

FFT in practice

A naïve N-point Fourier transform scales as N^{2}, but using this divide-and-conquer style we can perform it in $\sim N \log _{2} N$ time instead.
This is why it is called the Fast Fourier Transform (FFT)!
There are many different algorithms to do this, but they are all 'fast' in this sense.
What can we do with these fast Fourier transforms?

Example use: long multiplication

Pictures

Most images aren't periodic, but we only care about a finite region.
We can define the region to be repeated through all space - in fact it's convenient to reflect about the Cartesian axes to make it an even function.

Our eyes are often insensitive to small, high-frequency changes...

- We can ignore these coefficients
- Truncate Fourier expansion
- Image compression!

Square with 100% of Fourier components

Square with 50% of Fourier components

Fun with images

