

Physics Coding Club The Fast Fourier Transform

Phil Hasnip phil.hasnip@york.ac.uk

Physics Coding Club|May 2018|1/17

Fourier Series

Any 'sensible' 1D periodic function with period L may be expressed as a Fourier series:

$$f(x) = \sum_{G=0}^{\infty} \left[a_G \sin\left(\frac{2\pi i G x}{L}\right) + b_G \cos\left(\frac{2\pi i G x}{L}\right) \right]$$

where i is the imaginary number, G is an integer and a_G and b_n are coefficients (real, for real functions).

Often convenient to rewrite as complex exponentials:

$$f(x) = \sum_{G=-\infty}^{\infty} c_G e^{\frac{2\pi i G x}{L}}$$

where c_G are the *Fourier coefficients* (usually complex).

Physics Coding Club|May 2018|2/17

Derivatives of periodic functions

The derivatives of Fourier series are also Fourier series:

$$f(x) = \sum_{G=-\infty}^{\infty} c_G e^{\frac{2\pi i G x}{L}}$$

$$\Rightarrow \frac{df}{dx} = \sum_{G=-\infty}^{\infty} \frac{2\pi i G}{L} c_G e^{\frac{i\pi G x}{L}}$$

$$\frac{d^2 f}{dx^2} = \sum_{G=-\infty}^{\infty} \left(-\frac{4\pi^2 G^2}{L^2}\right) c_G e^{\frac{2\pi i G}{L}}$$

So what? Differential equations

$$\frac{d^2f}{dx^2} + f = 0$$

becomes

$$\sum_{G=-\infty}^{\infty} \left[\left(-\frac{4\pi^2 G^2}{L^2} \right) + 1 \right] c_G e^{\frac{i\pi Gx}{L}} = 0$$

i.e.

$$G^2 = \frac{L^2}{4\pi^2}$$
$$\Rightarrow G = \pm \frac{L}{2\pi}$$

or $c_G = 0$.

Physics Coding Club|May 2018|4/17

Fourier transform

For a given function f(x), we can find any particular c_m using:

$$c_m = \frac{1}{2\pi} \int_{-L}^{L} f(x) e^{-\frac{i\pi mx}{L}} dx$$

These coefficients are often called the *Fourier transform* of f(x), and written as \tilde{f}_G or F_G .

The Discrete Fourier transform

Suppose L = 1 and our periodic function is sampled on a regular grid with N points. Our sampled function is a discrete function and we have:

$$f_x = \frac{1}{N} \sum_{G=0}^{N-1} F_G e^{2\pi i G x}$$
$$F_G = \sum_{x=0}^{N-1} f_x e^{-2\pi i G x} dx$$

So what? Convolutions

Convolutions happen a lot in science.

$$p_x = (f * h)_x = \sum_{x'} f_{x'} h_{x-x'}$$

Sum over N points for each x value, so need N^2 operations in total. But the Fourier transform \tilde{p}_G is:

 $P_G = F_G H_G$

Only need 1 multiplication for each G value, so need N operations in total. So if we have the Fourier transforms of f and h, we can quickly compute the Fourier transform of p...

FFT in practice

This only works if we can do the Fourier transform fast than N^2 ...

Example: 2-point discrete transform

Sample function f_x in real-space at 2 points. Want to Fourier transform to get F_G the 2 Fourier components.

$$F_1 = f_1 + f_2$$

$$F_2 = f_1 - f_2$$

Example: 4-point discrete transform

Sample function f_x in real-space at 2 points. Want to Fourier transform to get F_G the 2 Fourier components.

$$F_{1} = f_{1} + f_{2} + f_{3} + f_{4}$$

$$F_{2} = f_{1} + if_{2} - f_{3} - if_{4}$$

$$F_{3} = f_{1} - f_{2} + f_{3} - f_{4}$$

$$F_{4} = f_{1} - if_{2} - f_{3} + if_{4}$$

This looks like N^2 work, but if we gather terms...

Example: 4-point discrete transform

Sample function f_x in real-space at 2 points. Want to Fourier transform to get F_G the 2 Fourier components.

$$\begin{array}{rcl} F_1 &=& f_1 + f_2 + f_3 + f_4 \\ &=& (f_1 + f_3) + (f_2 + f_4) \\ F_2 &=& f_1 + if_2 - f_3 - if_4 \\ &=& (f_1 - f_3) + i(f_2 - f_4) \\ F_3 &=& f_1 - f_2 + f_3 - f_4 \\ &=& (f_1 + f_3) - (f_2 + f_4) \\ F_4 &=& f_1 - if_2 - f_3 + if_4 \\ &=& (f_1 - f_3) - i(f_2 + f_4) \end{array}$$

A naïve N-point Fourier transform scales as N^2 , but using this divide-and-conquer style we can perform it in $\sim N \log_2 N$ time instead. This is why it is called the *Fast* Fourier Transform (FFT)! There are many different algorithms to do this, but they are all 'fast' in this sense. What can we do with these fast Fourier transforms?

Example use: long multiplication

Physics Coding Club|May 2018|13/17

Pictures

Most images aren't periodic, but we only care about a finite region.

We can define the region to be repeated through all space – in fact it's convenient to reflect about the Cartesian axes to make it an even function.

Our eyes are often insensitive to small, high-frequency changes...

- We can ignore these coefficients
- Truncate Fourier expansion
- Image compression!

Square with 100% of Fourier components

Physics Coding Club|May 2018|15/17

Square with 50% of Fourier components

Physics Coding Club|May 2018|16/17

Fun with images

Physics Coding Club|May 2018|17/17