Managing your software
project

Killian Murphy <killian.murphy@york.ac.uk>

Background

UNIX systems administration
Legacy systems maintenance
Full-stack development
Business analysis

Project management

Presentation structure

e Divided into three core aspects of software projects

e Eachsection will include an introduction, an informal approach, a formal approach, and attempt to
evaluate some relevant technologies

e Happy to field questions at any point during the presentation

e Audience participation is particularly encouraged at the end of each section - | (and others) want to
know how you manage your software projects!

Key facets of a software project

e Design:

o Specification of the things required to achieve the intended project outcome
e Implementation:

o Transformation of specification into code
e Maintainability:

o Sustaining project health and promoting collaboration

Design

Knowing where you’re going and what
the steps are that you need to take to
get there
Informal or formal, as appropriate
o Prosand cons to both approaches, as
you'd expect
o Document either way!
Always consider this aspect of your
project
o Canbeinvaluable to know why you
chose to do something

Others may want/need rationale
Useful record for write-up

Informal approach to design

Formal approach to design

Choose your approach to gathering requirements:
o Enumeration
o ‘Brainstorming’
o Interviews
o Inspecting other codebases
e Document your approach to gathering requirements
o Project overview
o Requirement analysis and validation techniques
o Requirement prioritisation strategy
e Document important contacts
e Identify sources of requirements

e Derive aschedule

Formal approach to design

e Gather and document requirements from identified sources

e Analyse and validate your requirements
o Thiscanresult in some iteration

e Prioritise your requirements
e Confirmrequirements with collaborators

Formal approach to design

e Identify and document useful tools (libraries, methodologies, patterns, textbooks etc)
e Include rationale wherever appropriate

o Evenifyoudisagree with it later, it is likely to be useful to know why you chose to do something
e Consider your software architecture

o Diagrams can be very useful here

o Investigate architectures of similar projects, if they exist

o Reflect on other projects that you have worked on

Supporting
technologies

Google Drive

e Supports many types of document

e Straightforward to collaborate on

e Canbe scripted (but you probably
don’t want to)

e Painful to version control

e Requires Google account

Google Drive

Supporting
technologies

Markdown

Plain text!

Straightforward to version control
Convertible to many formats
Simple syntax

Learning curve

No native support for diagrams
Not WYSIWYG

Supporting
technologies

Treesheets

e Supports all kinds of data
organisation

e Veryflexible

e Simple enoughtolearn

e Notstraightforward to version
control

e Cumbersome user experience

TREESHEETS

Design: audience experience

e How have you managed the design of your software projects?
e What has your experience been with your method of design?

Implementation

Transformation of specification into
code
Very fun
o Canbetoo much fun!
Vast range of opinions on how
implementation should be carried out
o Oftenaverydivisive subject
Attention paid to project design pays
off here

Informal approach to implementation

e Pay attention to any project specifications
o Reviewing the spec > deviating from the spec during implementation
e USE VERSION CONTROL
o Gitisinwidespread use, and works especially well in teams
o Subversion and Mercurial have been historically popular, although appear to be in decline [1]
e Consider writing documentation as you write code
o Either in-code or outside of code
o Covered in ‘Maintainability’
e Build your implementation in small, testable chunks

o Makes debugging (which you will be doing) more manageable
o Cankeep you motivated to know that things are on-track

https://trends.google.com/trends/explore?date=all&q=%2Fm%2F05vqwg,%2Fm%2F012ct9,%2Fm%2F08441_,%2Fm%2F08w6d6,%2Fm%2F09d6g&hl=en-US

Informal approach to implementation

e Consider inviting somebody to review your code
o Things might make perfect sense to you, but not to others
e Don't‘reinvent the wheel’

o Many problems have already been solved - use existing implementations (where appropriate)
e Workonyour codebase regularly...

o Can bedifficult to ‘get back into’ a codebase after time away
e ..butdon’t work onyour codebase excessively

o Match the implementation to your intended outcomes

o Premature optimization is the root of all evil

o Bewary of burning out

Formal approach to implementation

Test-driven development

Very short development cycle

Software grows with respect to new tests, which the software must pass
Canfoster very lean codebases

Can foster ridiculous codebases

Apply judiciously!

Formal approach to implementation

Test-driven development

e Runtests
o Alltests must be passed - return to step 3 if

there are failures
Refactor codebase

o Revise the code that simply passes the test -
this forces the entire codebase to be

regularly reviewed
o All tests must still pass!

e Addatest

o Closely coupled with a project requirement,
mandating a strong specification

e Validate the new test

e Write code to pass the test
o The minimal solution to pass the test -
elegance is not important yet

Supporting
technologies

GNU Make

Very flexible in its possible uses
Well-documented

Many examples available

Syntax can be obtuse

Doesn’t scale well

Consider alternatives: Snakemake,
Airflow etc

Supporting
technologies

Vagrant

e Provides consistency throughout
implementation

Straightforward to configure
Many ‘boxes’ available

Can easily induce time wasting
Update issues

VAGRANT

Supporting
Technologies

GitHub

e Generally good user experience

e Straightforward to use

e Offers more than just repository
hosting

e Freefor academicuse

e Canbeoverwhelming

Implementation: audience experience

e Howdo you go about implementation?
e Anyfavourite tools?

Maintainability

Keeping the project
healthy

Promoting collaboration
Simplifying debugging
Supporting change
Future-proofing

Informal approach to maintainability

e Codingstyle

o Supported/community style guide

o Consistency

o Personal preference vs readability
e Documentation

o ‘Self-documenting’ code

o Documentation generation

o Tutorials/examples

Informal approach to maintainability

e Consider issue tracking:
o TODO
o Separate document
o lIssuetracker
e Onboarding
o How straightforward is it for somebody else to pick up your codebase?
o Tryit!
e You never know when you might use your software again

Informal approach to maintainability

e Well-considered build system can be key
o Building on arange of systems
o Building for a range of systems

e Factor maintainability into your project design, commit to maintainability during implementation
e Software Sustainability Institute provides useful reading material [2]

https://www.software.ac.uk/developing-maintainable-software

Formal approach to maintainability

Complexity Metrics

e Cyclomatic complexity
o Linearly independent paths through code
o Derive control flow graphs for functional units
o M=E-N+2P
o Aimto minimise this number to a threshold, and refactor unit when threshold reached

Formal approach to maintainability

Complexity Metrics

e Halstead complexity measures
o Extract measurable properties of software, computed statically from code
o Evaluate relationships between properties, including
m Programvocabulary
m Programvolume
m Programdifficulty
m Estimate of delivered bugs

Supporting
technologies

Doxygen
e Mature
e Feature-rich
e Useful syntax
e Drastically increases implementation

time
e Default output not very pretty

Supporting
technologies

GitHub

Wiki included with every repository
Integrated issue tracking

Neat collaboration mechanisms
Opinionated

Time-consuming

Supporting
technologies

Jupyter Notebooks

e Perfect for tutorials/worked
examples

e Accessible

e Straightforward to integrate and

share

).

jupyter
S’

Maintainability: audience experience

e Have youworked on a low-maintainability project?
e How do you foster maintainability within your projects?

Summary

e Makeamap
e Follow the map, try not to let yourself get lost
e Ensure that others can both follow the map and make changes

Resources

e Google Drive e Vagrant

e Markdown e GitHub

e Treesheets e Software Sustainability Institute
e Git e Cyclomatic complexity

e Subversion e Halstead complexity measures
e GNU Make e Doxygen

e Snakemake e Jupyter

e Airflow

https://drive.google.com
https://daringfireball.net/projects/markdown/syntax
http://treesheets.com
https://git-scm.com/
https://subversion.apache.org/
https://www.gnu.org/software/make/
https://snakemake.readthedocs.io/en/stable/
https://airflow.incubator.apache.org/
https://www.vagrantup.com/
https://github.com/
https://www.software.ac.uk/
https://en.wikipedia.org/wiki/Cyclomatic_complexity
https://en.wikipedia.org/wiki/Halstead_complexity_measures
http://www.stack.nl/~dimitri/doxygen/
https://jupyter.org/

