
Managing your software 
project

Killian Murphy <killian.murphy@york.ac.uk>



Background

● UNIX systems administration

● Legacy systems maintenance

● Full-stack development

● Business analysis

● Project management



Presentation structure

● Divided into three core aspects of software projects

● Each section will include an introduction, an informal approach, a formal approach, and attempt to 

evaluate some relevant technologies

● Happy to field questions at any point during the presentation

● Audience participation is particularly encouraged at the end of each section - I (and others) want to 

know how you manage your software projects!



Key facets of a software project

● Design: 
○ Specification of the things required to achieve the intended project outcome

● Implementation:
○ Transformation of specification into code

● Maintainability:
○ Sustaining project health and promoting collaboration



Design ● Knowing where you’re going and what 

the steps are that you need to take to 

get there

● Informal or formal, as appropriate
○ Pros and cons to both approaches, as 

you’d expect
○ Document either way!

● Always consider this aspect of your 

project
○ Can be invaluable to know why you 

chose to do something
○ Others may want/need rationale
○ Useful record for write-up



Informal approach to design



Formal approach to design

● Choose your approach to gathering requirements:
○ Enumeration
○ ‘Brainstorming’
○ Interviews
○ Inspecting other codebases

● Document your approach to gathering requirements
○ Project overview
○ Requirement analysis and validation techniques
○ Requirement prioritisation strategy

● Document important contacts

● Identify sources of requirements

● Derive a schedule



Formal approach to design

● Gather and document requirements from identified sources

● Analyse and validate your requirements
○ This can result in some iteration

● Prioritise your requirements

● Confirm requirements with collaborators



Formal approach to design

● Identify and document useful tools (libraries, methodologies, patterns, textbooks etc)

● Include rationale wherever appropriate
○ Even if you disagree with it later, it is likely to be useful to know why you chose to do something

● Consider your software architecture
○ Diagrams can be very useful here
○ Investigate architectures of similar projects, if they exist
○ Reflect on other projects that you have worked on



Supporting 
technologies

Google Drive

● Supports many types of document

● Straightforward to collaborate on

● Can be scripted (but you probably 

don’t want to)

● Painful to version control

● Requires Google account



Supporting 
technologies

Markdown

● Plain text!

● Straightforward to version control

● Convertible to many formats

● Simple syntax

● Learning curve

● No native support for diagrams

● Not WYSIWYG



Supporting 
technologies

Treesheets

● Supports all kinds of data 

organisation

● Very flexible

● Simple enough to learn

● Not straightforward to version 

control

● Cumbersome user experience



Design: audience experience

● How have you managed the design of your software projects?

● What has your experience been with your method of design?



Implementation ● Transformation of specification into 

code

● Very fun
○ Can be too much fun!

● Vast range of opinions on how 

implementation should be carried out
○ Often a very divisive subject

● Attention paid to project design pays 

off here



Informal approach to implementation

● Pay attention to any project specifications
○ Reviewing the spec > deviating from the spec during implementation

● USE VERSION CONTROL
○ Git is in widespread use, and works especially well in teams
○ Subversion and Mercurial have been historically popular, although appear to be in decline [1]

● Consider writing documentation as you write code
○ Either in-code or outside of code
○ Covered in ‘Maintainability’

● Build your implementation in small, testable chunks
○ Makes debugging (which you will be doing) more manageable
○ Can keep you motivated to know that things are on-track

https://trends.google.com/trends/explore?date=all&q=%2Fm%2F05vqwg,%2Fm%2F012ct9,%2Fm%2F08441_,%2Fm%2F08w6d6,%2Fm%2F09d6g&hl=en-US


Informal approach to implementation

● Consider inviting somebody to review your code
○ Things might make perfect sense to you, but not to others

● Don’t ‘reinvent the wheel’
○ Many problems have already been solved - use existing implementations (where appropriate)

● Work on your codebase regularly...
○ Can be difficult to ‘get back into’ a codebase after time away

● ...but don’t work on your codebase excessively
○ Match the implementation to your intended outcomes
○ Premature optimization is the root of all evil
○ Be wary of burning out



Formal approach to implementation

Test-driven development

● Very short development cycle

● Software grows with respect to new tests, which the software must pass

● Can foster very lean codebases

● Can foster ridiculous codebases

● Apply judiciously!



Formal approach to implementation

Test-driven development

● Add a test
○ Closely coupled with a project requirement, 

mandating a strong specification

● Validate the new test

● Write code to pass the test
○ The minimal solution to pass the test - 

elegance is not important yet

● Run tests
○ All tests must be passed - return to step 3 if 

there are failures

● Refactor codebase
○ Revise the code that simply passes the test - 

this forces the entire codebase to be 
regularly reviewed

○ All tests must still pass!



Supporting 
technologies

GNU Make

● Very flexible in its possible uses

● Well-documented

● Many examples available

● Syntax can be obtuse

● Doesn’t scale well

● Consider alternatives: Snakemake, 

Airflow etc



Supporting 
technologies

Vagrant

● Provides consistency throughout 

implementation

● Straightforward to configure

● Many ‘boxes’ available

● Can easily induce time wasting

● Update issues



Supporting 
Technologies

GitHub

● Generally good user experience

● Straightforward to use

● Offers more than just repository 

hosting

● Free for academic use

● Can be overwhelming



Implementation: audience experience

● How do you go about implementation?

● Any favourite tools?



Maintainability ● Keeping the project 
healthy

● Promoting collaboration
● Simplifying debugging
● Supporting change
● Future-proofing



Informal approach to maintainability

● Coding style
○ Supported/community style guide
○ Consistency
○ Personal preference vs readability

● Documentation
○ ‘Self-documenting’ code
○ Documentation generation
○ Tutorials/examples



Informal approach to maintainability

● Consider issue tracking:
○ TODO
○ Separate document
○ Issue tracker

● Onboarding
○ How straightforward is it for somebody else to pick up your codebase?
○ Try it!

● You never know when you might use your software again



Informal approach to maintainability

● Well-considered build system can be key
○ Building on a range of systems
○ Building for a range of systems

● Factor maintainability into your project design, commit to maintainability during implementation

● Software Sustainability Institute provides useful reading material [2]

https://www.software.ac.uk/developing-maintainable-software


Formal approach to maintainability

Complexity Metrics

● Cyclomatic complexity
○ Linearly independent paths through code
○ Derive control flow graphs for functional units
○ M = E - N + 2P
○ Aim to minimise this number to a threshold, and refactor unit when threshold reached



Formal approach to maintainability

Complexity Metrics

● Halstead complexity measures
○ Extract measurable properties of software, computed statically from code
○ Evaluate relationships between properties, including

■ Program vocabulary
■ Program volume
■ Program difficulty
■ Estimate of delivered bugs



Supporting 
technologies

Doxygen

● Mature

● Feature-rich

● Useful syntax

● Drastically increases implementation 

time

● Default output not very pretty



Supporting 
technologies

GitHub

● Wiki included with every repository

● Integrated issue tracking

● Neat collaboration mechanisms

● Opinionated

● Time-consuming



Supporting 
technologies

Jupyter Notebooks

● Perfect for tutorials/worked 

examples

● Accessible

● Straightforward to integrate and 

share



Maintainability: audience experience

● Have you worked on a low-maintainability project?

● How do you foster maintainability within your projects?



Summary

● Make a map
● Follow the map, try not to let yourself get lost
● Ensure that others can both follow the map and make changes



Resources

● Google Drive

● Markdown

● Treesheets

● Git

● Subversion

● GNU Make

● Snakemake

● Airflow

● Vagrant

● GitHub

● Software Sustainability Institute

● Cyclomatic complexity

● Halstead complexity measures

● Doxygen

● Jupyter

https://drive.google.com
https://daringfireball.net/projects/markdown/syntax
http://treesheets.com
https://git-scm.com/
https://subversion.apache.org/
https://www.gnu.org/software/make/
https://snakemake.readthedocs.io/en/stable/
https://airflow.incubator.apache.org/
https://www.vagrantup.com/
https://github.com/
https://www.software.ac.uk/
https://en.wikipedia.org/wiki/Cyclomatic_complexity
https://en.wikipedia.org/wiki/Halstead_complexity_measures
http://www.stack.nl/~dimitri/doxygen/
https://jupyter.org/

