
Introduction to Makefiles
Peter Hill

Introduction to Makefiles|August 2017|1/21

Introduction to makefiles

What are we trying to solve?

Building software which consists of more than n files rapidly becomes tedious to do
by hand
Building software which includes any nature of logic in determining what/how to
build rapidly becomes very complex
Automation beats manual fiddling 9 times out of 10

Important corollary

All build systems are terrible, but some also work

Introduction to Makefiles|August 2017|2/21

Simple example

Small C project

src/
|- program.c
|- foo.c
\- foo.h

C program with a “main” source file, and header/implementation files
Easy to compile by hand:
gcc -o program program.c foo.c

Gets trickier with more files, more flags, compilation order, etc.

Introduction to Makefiles|August 2017|3/21

First thing

Shell script

#!/bin/bash
gcc -o program program.c foo.c

Write a shell script with our compile commands in
Works ok for simple projects
Has some downsides:

Change one file and we have to recompile everything
Update how to compile one file and we need to recompile everything
Adding more files means either copy+pasting (with associated mistakes) or adding
complex logic
We have all those CPU cores sitting idle while we compile one file at a time. . .

Introduction to Makefiles|August 2017|4/21

make

Like most veteran programming tools, make was created in the 1970s
Standard implementation on Linux is GNU make
make is a declarative language, as opposed to imperative
You tell make how to do something, and it figures what to do
Basic form of a rule is:

target: prerequisites
recipe

Note: that’s a literal tab before recipe

Introduction to Makefiles|August 2017|5/21

Advantages of make

make will figure out what order things need doing in
make will figure out what things actually need doing
Change a file, and make will rebuild that file and everything that depends on, and
no more
These things are true of other build systems too!

Second most popular is probably CMake
Also whatever web developers are using this week

Introduction to Makefiles|August 2017|6/21

Simple example

Makefile

all:
gcc -o program program.c foo.c

Now we can just run make and build our program!
By default, make builds the first target in the makefile
By convention, the all target builds the whole program

Introduction to Makefiles|August 2017|7/21

Simple example
Makefile

Let’s get fancier:

all: program
program: program.o foo.o

gcc -o program program.o foo.o
program.o: program.c

gcc -c program.c
foo.o: foo.c

gcc -c foo.c

Now if we only change program.c, foo.c doesn’t need to be recompiled
make program.o will build just program.o and its prerequisites

Introduction to Makefiles|August 2017|8/21

Variables
Compile time configuration

What if we sometimes want to compile with a different compiler?

CC is the default name for the C compiler
CC = gcc
all: program
program: program.o foo.o

$(CC) -o program program.o foo.o
program.o: program.c

$(CC) -c program.c
foo.o: foo.c

$(CC) -c foo.c

Note: the default/conventional names for the C++ compiler is CXX, and FC for the
Fortran compiler Introduction to Makefiles|August 2017|9/21

Variables
Flags and libraries

CC = gcc
CFLAGS for C compile flags, CXXFLAGS for C++, FFLAGS for Fortran
CFLAGS = -g -Wall
LDLIBS for libraries, LDFLAGS for linker flags (i.e. -L)
LDLIBS = -lm
all: program
program: program.o foo.o

$(CC) $(CFLAGS) -o program program.o foo.o $(LDLIBS)
program.o: program.c

$(CC) $(CFLAGS) -c program.c
foo.o: foo.c

$(CC) $(CFLAGS) -c foo.c

Introduction to Makefiles|August 2017|10/21

Cleaning up

The clean rule

We often want to compile from a clean start
The conventional target for this is clean:

.PHONY: clean
clean:

rm -fv *.o *~

We use -f so that rm doesn’t error if a file doesn’t exist (more important if you use
a variable here)
The .PHONY rule tells make that clean doesn’t produce a file named clean

Introduction to Makefiles|August 2017|11/21

Adding more files

Patterns and automatic variables

We’re repeating ourselves a lot, specifying the source file in both the prerequisite
and the actual recipe
Also, all the recipes are identical, save for the filenames
This is where patterns and automatic variables come in:

%.o: %.c
$(CC) $(CFLAGS) -o $@ $^

The % is a pattern: foo.o matches %.o
The part matching % is called the stem and gets expanded on both sides
If foo.o matches the target, then %.c expands to foo.c

Introduction to Makefiles|August 2017|12/21

Adding more files

Patterns and automatic variables

We’re repeating ourselves a lot, specifying the source file in both the prerequisite
and the actual recipe
Also, all the recipes are identical, save for the filenames
This is where patterns and automatic variables come in:

%.o: %.c
$(CC) $(CFLAGS) -o $@ $^

$@ and $ˆ are automatic variables:
$@ expands to the name of the target
$ˆ expands to the names of all the prerequisites, separated by spaces

Introduction to Makefiles|August 2017|13/21

Adding more files
Back to our example

CC = gcc
CFLAGS = -g -Wall
LDLIBS = -lm

all: program
program: program.o foo.o

$(CC) $(CFLAGS) -o $@ $^ $(LDLIBS)
%.o: %.c

$(CC) $(CFLAGS) -c -o $@ $^

clean:
rm -fv *.o *~

Introduction to Makefiles|August 2017|14/21

Adding more files

Now when we want to add a new source file to the program, it’s a very simple
change
Let’s also list all the files in a variable

Introduction to Makefiles|August 2017|15/21

Adding more files
Back to our example

CC = gcc
CFLAGS = -g -Wall
LDLIBS = -lm
OBJECTS = program.o foo.o bar.o

all: program
program: $(OBJECTS)

$(CC) $(CFLAGS) -o $@ $^ $(LDLIBS)
%.o: %.c

$(CC) $(CFLAGS) -c -o $@ $^

clean:
rm -fv *.o *~

Introduction to Makefiles|August 2017|16/21

Going further

Useful flags

--jobs=N tries to run N recipes at once – very useful for larger projects!
--load-average=N doesn’t start new jobs if the load is more than N
--keep-going tells make to keep going even if there are errors – useful for finding
as many errors as possible in one go
--file=FILE use FILE instead of the default makefile
--directory=DIRECTORY change to DIRECTORY before doing anything
--dry-run just print the recipes, instead of running them

Introduction to Makefiles|August 2017|17/21

Going further
Fancier features

make is the standard *nix build system for projects large and small, and hence has
lots of features
More complicated features not covered here:

Implicit rules and variables
Searching other directories for prerequisites using VPATH, useful to place compilation
artefacts in a different directory to the source
Lots of functions for transforming text
Conditionals:

ARCHER specific compiler
ifeq ($(machine),archer)
FC = ftn
endif

Introduction to Makefiles|August 2017|18/21

Going further

Implicit rules and variables

make already knows how to build certain types of files from other ones
Also has lots of “implicit” variables
Our example makefile could be as simple as:

program: program.o foo.o
$(CC) $(CFLAGS) -o $@ $^ $(LDLIBS)

clean:
rm -fv *.o *~

Introduction to Makefiles|August 2017|19/21

Going further
Automatically making Fortran dependencies

https://github.com/ZedThree/fort_depend.py
pip install --user fortdepend

all: $(actual_executable) my_project.dep

.PHONY: depend
depend: my_project.dep

my_project.dep: $(OBJECTS)
fortdepend -w -o my_project.dep -f $(OBJECTS)

include my_project.dep

Introduction to Makefiles|August 2017|20/21

Going further
Automatically creating directories

OBJDIR := objdir
OBJS := $(addprefix $(OBJDIR)/,foo.o bar.o baz.o)

$(OBJDIR)/%.o : %.c
$(COMPILE.c) $(OUTPUT_OPTION) $<

all: $(OBJS)
The | signifies an "order-only" prerequisite
$(OBJS): | $(OBJDIR)

$(OBJDIR):
mkdir $(OBJDIR)

Introduction to Makefiles|August 2017|21/21

