
Searching for Answers in a
Text-Based Universe

A Brief Introduction to Regex

Jacob Wilkins

Regular Expressions - Not so Regular

Regular Expressions (RegEx) are a language which describes
language
Provides concise language for very general string matching
Useful at many levels for general purpose pattern matching
Used throughout applications which you already know e.g. Syntax
Highlighting

Regular Expressions|May 2017|2/21

Why should I care

Useful in science for large range of applications:
Filtering data
Searching files
Parsing input
Automating workflow
Mass updating or changing files

Regular Expressions|May 2017|3/21

Where can I find RegEx
Anywhere:

Python – import re;tag_re = re.compile(’<−− ([a−zA−Z])$’)
Javascript – var tag_re = new RegExp(’<−− ([a−zA−Z])$’)
C – #include <regex.h>; regex_t tag_re;
int err = regcomp(& tag_re, ’<−− ([a−zA−Z])$’);
C++ – #include <regex>; std:: regex tag_re(’<−− ([a−zA−Z])$’);
Perl – $tag_re = qr ’<−− ([a−zA−Z])$’;

Bash
sed – sed −r "/<−− ([a−zA−Z])$/"
grep – grep −E "<−− ([a−zA−Z])$"
awk – tag_re = "<−− ([a−zA−Z])$"
less – /<−− ([a−zA−Z])$ RET

emacs – (setq tag_re "<−−\s−\([a−zA−Z]\)$")
vim – /<−− ([a−zA−Z])$ RET
And many more...

Regular Expressions|May 2017|4/21

Worked example

Let’s try a RegEx for ourselves. Download warning.txt from the
PCC repo.
This data file is a fictional test of an RNG trying to generate N (0,1], but
struggling.
All data over 1 are marked warning, all over 1.09 are marked Error.
We can use tools like grep to see if we have any warnings or errors,
just by looking for the words separately.
grep -c "warning"; grep -c "Error";

How about if we wanted to see how many warnings OR errors there
were?
grep -Ec "(warning|Error)"

This is called “Alternation” and is a RegEx feature.

Regular Expressions|May 2017|5/21

More features

How about if we don’t know the word exactly?
We don’t know if it is capitalised or not!
We don’t know if it is a plural or not!
Why have they used an American spelling?!
I know it had a “ment” in there somewhere... and maybe a q, b, d, or p at
the start...

Regular Expressions|May 2017|6/21

Spelling is optional
How about if we don’t know the word exactly?

We don’t know if it is capitalised or not!
We can use alternation here!
(M|m)aybe it’s capitalised

We don’t know if it is a plural or not!
We can use optional characters!
Perhaps it contains (a)?plurals?

Why have they used an American spelling?!
We can use a different kind of alternation if we want
Capitali[sz]ed\? Don’t you mean capitali[sz]ed\?

I know it had a “ment” in there somewhere... and maybe a q, b, d, or p at
the start...

We can use a match to anything or blocks of letters
[qbdp].+ment.* Ah! Parliament or demented... They’re synonyms
aren’t they?

Regular Expressions|May 2017|7/21

More Features

How about if we care about where it is, not what it is
I only care if it’s at the beginning or end of a line!
I only care if it’s the whole word.

Regular Expressions|May 2017|8/21

Anchors aweigh!

How about if we care about where it is, not what it is
I only care if it’s at the beginning or end of a line!

We can use anchors to say this
^This is at the beginning
This is at the end$

I only care if it’s the whole word.
We can use barriers to do this
\bThis\b word is the whole word, I don’t care about thistles!

Regular Expressions|May 2017|9/21

Worked Example 2

Let’s try another RegEx. Download gibberish.txt from the PCC
repo.
Try to find all the words ending with “e”.
I have provided the following script in the PCC repo to serve as a basis
find_boo.py.
impor t re

w i th open (’ g i bbe r i sh . t x t ’ , ’ r ’) as example :
f o r l i n e i n example :

i f (re . match (’ boo ’ , l i n e)) :
p r i n t (l i n e)

Regular Expressions|May 2017|10/21

Substitution

RegEx can do more than just find things
We can use RegEx to change things, too
This is very useful in automation

Regular Expressions|May 2017|11/21

Once upon a time..

https://sites.psu.edu/siowfa16/files/2016/10/coffee-1byged6.jpg
Regular Expressions|May 2017|12/21

Regular Expressions|May 2017|13/21

Aha!

! / b in / bash

f o r f i l e i n ∗ . i npu t ; do
echo " ta rge t_pressure 10 GPa" >> $ f i l e ;
. / run_program $ f i l e ;

done

Regular Expressions|May 2017|14/21

In no time...

https://sites.psu.edu/siowfa16/files/2016/10/coffee-1byged6.jpg
Regular Expressions|May 2017|15/21

What can we do?

! / b in / bash

f o r press i n { 5 . . 1 0 0 . . 5 } ; do
f o r f i l e i n ∗ . i npu t ; do

sed − i −r ’ s / (ta rge t_pressure) . ∗ / \ 1 ’ $press \
’ GPa’ $ f i l e ;
. / run_program $ f i l e ;

done
done

Regular Expressions|May 2017|16/21

Substitute your life for mine
Python – import re;re.sub(’ /water/ ’ , ’wine’, "Let ’s drink water")
Javascript – "Let ’s drink water".replace(/water/g, ’wine’)
C – Does not natively support replacement, though there are modules such as
PCRE.
C++ – #include <regex>;
std :: regex_replace("Let’s drink water",std :: regex (’water’), ’wine’);
Perl – "Let ’s drink water"=~s/water/wine/;

Bash

sed – sed −r "s/water/wine/" file
awk – gensub(/water/, ’wine’, "" , "Let ’s drink water")

emacs – (replace−regexp ’water ’wine)
vim – :s/water/wine/ RET
And many more...

Regular Expressions|May 2017|17/21

Worked Example 3
Have a go at replacing some strings in gibberish.txt

Try replacing all instances of “boo” with “foo”
How about all final letters with “s”
How about all “o”s with “e”
Note: For this one, if you are not using Python you might need to use
the “g” flag, Python has optional count arg.
I have provided the following script in the PCC repo to serve as a basis
sub_boo.py.
impor t re

w i th open (’ g i bbe r i sh . t x t ’ , ’ r ’) as example :
f o r l i n e i n example :

p r i n t (re . sub (’mach ’ , ’ i n l ’ , l i n e))

Regular Expressions|May 2017|18/21

More features

It’s not a word, it’s a number!
/[0-9]+/ Finds only lines containing a number
We want to repeat the word!
s/^\W*(\w+)\s/\1 \1/ Prints the first word of a sentence twice
We only want part of the word!
s/\b(\w{1,4})\w*\b/\1/g prints only the first 4 letters of every
word
We only know how it should look, not what’s in there!
/[-+]?[0-9]*\.?[0-9]+([eE][-+]?[0-9]+)?/ Finds any valid
float in most programming languages

Regular Expressions|May 2017|19/21

Extra Exercises

I have added some extra exercises, if anyone wants to try using some
of this more advanced RegEx.
Quartz.geom contains an excerpt from a geometry optimisation in
CASTEP.
Say we wanted this in .xyz format, could we do this?
https://en.wikipedia.org/wiki/XYZ_file_format

Alice.txt contains over 600 lines of Markov chain generated Alice
in Wonderland.
It also contains something formatted like a post-code, can you find it?

Regular Expressions|May 2017|20/21

More places to learn
http://www.regular-expressions.info/tutorial.html – Full guide for
RegExes from start to finish
http://regexr.com/ – Site where you can build, test and get explanations for
RegExes
https://alf.nu/RegexGolf – Game where you try to match words in as short a
RegEx as possible
https://regexcrossword.com/ – Puzzle where you fill in a RegEx like game of
battleships

Regular Expressions|May 2017|21/21

