
An introduction to Profiling

Physics Coding Club: 09/06/2017
D. Dickinson (d.dickinson@york.ac.uk)

• What is meant by profiling?

• Why do we care about profiling?

• How do we do profiling?

– Specific example using Scalasca

• Hands on session (if interested/working).

Overview

• Essentially: the process of measuring resource
requirements of a program.

• Often “profiling” refers to measuring time (or
cycles) used by different sections of code.

• Can also measure memory requirements, I/O,
communications etc.

What is profiling?

• Several different types:

• Sampling : Interrupt and ask
• Low overhead

• Statistical approach  may need longer runs

Types of profiling

• Several different types:

• Instrument : Insert code to measure
• Profile summarisation/Tracing

• More detailed, have to watch out for overhead etc.

Types of profiling

• Several different types:

• Sampling : Interrupt and ask

• Instrument : Insert code to measure

• Others available (e.g emulation/interception,
event based etc.)

• Best choice depends on your aims, often a
combination will be helpful.

Types of profiling

• Generally most common reason is that you want to
optimise resource usage of the code
  Need to know where in the code dominant
resource usage lives (i.e. what & where).
  Need to understand cause of dominant resource
usage (e.g. why).

Why profile?

• Generally most common reason is that you want
to optimise resource usage of the code

• Can also be useful for other reasons:
• Get overview of code path.

• Look at how resource requirements scale (problem
size, number of processors etc.)

• Relative behaviour of different processes etc.

• Better understanding of the operation of the
code  more informed decisions about usage
and development.

Why profile?

• Can depend on which resources are of interest and
the type of code (language, serial/parallel etc).

• Will briefly discuss memory profiling with valgrind,
serial cpu profiling with gprof.

• Will have a more detailed demonstration of the
parallel profilier scalasca which gives details of cpu
and communication requirements (and possibly
more).

How to profile?

• Massif is a heap profiler. It measures how much
heap memory your program uses (can also
measure the stack usage).

• Compile program with –g to ensure symbols available.

• Run prog as
 >> valgrind --time-unit=B --tool=massif prog

• Results in file name massif.out.<pid> view with:
 >> ms_print massif.out.<pid>

Massif (Valgrind) – memory usage

• Will produce an ascii graph like

19.63^ ###

 | #

 | # ::

 | # : :::

 | :::::::::# : : ::

 | : # : : : ::

 | : # : : : : :::

 | : # : : : : : ::

 | ::::::::::: # : : : : : : :::

 | : : # : : : : : : : ::

 | ::::: : # : : : : : : : : ::

 | @@@: : : # : : : : : : : : : @

 | ::@ : : : # : : : : : : : : : @

 | :::: @ : : : # : : : : : : : : : @

 | ::: : @ : : : # : : : : : : : : : @

 | ::: : : @ : : : # : : : : : : : : : @

 | :::: : : : @ : : : # : : : : : : : : : @

 | ::: : : : : @ : : : # : : : : : : : : : @

 | :::: : : : : : @ : : : # : : : : : : : : : @

 | ::: : : : : : : @ : : : # : : : : : : : : : @

 0 +--->KB 0

• Also some more detailed breakdown of where memory allocated.

• See http://valgrind.org/docs/manual/ms-manual.html .

Massif (Valgrind) – memory usage

http://valgrind.org/docs/manual/ms-manual.html
http://valgrind.org/docs/manual/ms-manual.html
http://valgrind.org/docs/manual/ms-manual.html
http://valgrind.org/docs/manual/ms-manual.html

• Gprof is a performance analysis tool for capturing
numbers of calls and time spent in routines. (note actually two

versions of gprof; gnu-gprof and “Berkeley Unix-gprof”, little difference).

• First must compile and link with profiling support, using
gnu compiler family add ‘-pg’ option to compile+link flags
 gfortran -g -c myprog.f90 utils.f90 –pg
 gfortran -o myprog myprog.o utils.o –pg

• Now run program myprog as usual (must exit cleanly).
Produces gmon.out file.

• Can analyse with
 gprof <options> ./myprog gmon.out > report.txt

Gprof

• Can produce a range of different outputs, including a flat
profile/table like:

Flat profile:

 Each sample counts as 0.01 seconds.

 % cumulative self self total

 time seconds seconds calls ms/call ms/call name

 33.34 0.02 0.02 7208 0.00 0.00 open

 16.67 0.03 0.01 244 0.04 0.12 offtime

 16.67 0.04 0.01 8 1.25 1.25 memccpy

 16.67 0.05 0.01 7 1.43 1.43 write

 16.67 0.06 0.01 mcount

 0.00 0.06 0.00 236 0.00 0.00 tzset

 0.00 0.06 0.00 192 0.00 0.00 tolower

 0.00 0.06 0.00 47 0.00 0.00 strlen

• See https://sourceware.org/binutils/docs/gprof/ .

Gprof

https://sourceware.org/binutils/docs/gprof/

• Scalasca is a parallel profiler capable of measuring time, calls,
communication (and other metrics) across a range of
hardware (cpus, gpus, “novel” accelerator cards).

• Originally a standalone tool but with v2 now built on scorep
instrumentation tool as well as the cube and otf
analysis/format libraries.
• More components to configure and compile.

• More flexibility and compatibility (scorep underlies a number of
different performance analysis tools).

• Often available on HPC systems.

Scalasca – Requirements

• First stage to using Scalasca is to ask it to instrument your
code.

• Done by prefixing compiler command with ‘scalasca –
instrument’ or ‘skin’:
 gfortran file.f90 –o file.o  skin gfortran file.f90 –o file.o

• Can detect if compilation is parallel (MPI/OpenMP), serial,
on novel hardware etc.

• End result is just your normal executable.

Scalasca – Instrument

• Now we have an instrumented executable we just need to
run it for a (small representative) test case. Use the usual
command but prefix with ‘scalasca –analyze’ or ‘scan’, e.g.
 scan mpirun –np 2 ./prog <options>

• Slight delay but then program will run as usual, produces a
directory named something like scorep_prog_<np>_sum

• Contains several files including ‘profile.cubex’, could
proceed to view this immediately, but…

Scalasca – Run (analyse)

• At this point raw data recorded. A lot of different things can
be done now with this, often a could idea to do a little
more analysis with ‘scalasca –examine’ or ‘square’:
 scalasca –examine –s scorep_prog_<np>_sum

• Produces ‘summary.cubex’.

• Now can use ‘cube’ to view + explore the derived data
 cube scorep_prog_<np>_sum/summary.cubex

Scalasca – Examine (explore)

• You’ve now got enough information to be able to use
Scalasca to instrument, record and examine performance
data, but some useful further tips.

• Instrumentation can introduce overhead  If the
instrumented case is significantly slower than un-
instrumented case then this is a worry.

• Can define a filter file which excludes routines matching
given regex from instrumentation recording – used with ‘-f’
option to scan (i.e. run time).

Scalasca – Tips

• Reported routine names can be ‘mangled’ – to enable
demangling need to build scorep with libbfd support
(provided by binutils) – need the libbfd headers. The
command scorep-info config-summary reports features
enabled or not.

• PAPI support enables recording hardware counters. Use
papi_avail to report available counters. To record set the
SCOREP_METRIC_PAPI env var,
 export SCOREP_METRIC_PAPI=PAPI_TOT_INS,PAPI_FP_INS

• Often some limits for how many can record.

Scalasca – Tips

• To build a good filter file you can use
 scorep-score –r scorep_prog_<np>_sum |less
To report which routines are responsible for the most
recording. This will tell you time per visit/call as well 
Filter out those near the top of the list with small time/call.

• Can pass the new filter to scorep-score to get an idea of
how much the filter has reduced requirements without
rerunning the main program.

• Can derive your own metrics in cube, possible to
compare/merge etc. different runs using cube tools.

Scalasca – Tips

• General profiling and gprof : HPC course (http://www-
users.york.ac.uk/~mijp1/teaching/4th_year_HPC/lecture_n
otes/Profiling.pdf)

• Archer led training sessions, see
https://www.archer.ac.uk/training/ for upcoming and past
courses (past course material typically available e.g.
https://www.archer.ac.uk/training/course-
material/2015/06/perfan_durham/).

• Valgrind::massif guidance at
http://valgrind.org/docs/manual/ms-manual.html

Resources

http://www-users.york.ac.uk/~mijp1/teaching/4th_year_HPC/lecture_notes/Profiling.pdf
http://www-users.york.ac.uk/~mijp1/teaching/4th_year_HPC/lecture_notes/Profiling.pdf
http://www-users.york.ac.uk/~mijp1/teaching/4th_year_HPC/lecture_notes/Profiling.pdf
http://www-users.york.ac.uk/~mijp1/teaching/4th_year_HPC/lecture_notes/Profiling.pdf
http://www-users.york.ac.uk/~mijp1/teaching/4th_year_HPC/lecture_notes/Profiling.pdf
https://www.archer.ac.uk/training/
https://www.archer.ac.uk/training/course-material/2015/06/perfan_durham/
https://www.archer.ac.uk/training/course-material/2015/06/perfan_durham/
https://www.archer.ac.uk/training/course-material/2015/06/perfan_durham/
http://valgrind.org/docs/manual/ms-manual.html
http://valgrind.org/docs/manual/ms-manual.html
http://valgrind.org/docs/manual/ms-manual.html
http://valgrind.org/docs/manual/ms-manual.html

#Login to yarcc: EITHER

wget http://www-users.york.ac.uk/~dd502/scalasca/test.txt

chmod u+x test.txt ; ./test.txt

#OR : Get the source code to GS2

svn checkout svn://svn.code.sf.net/p/gyrokinetics/code/gs2/trunk GS2_TRUNK

#Setup the modules

export MODULEPATH=$MODULEPATH:/opt/yarcc/Modules/physics/

module purge

module load gnu/6.3.0 openmpi/2.1.1 hdf5 NetCDF/4.4.1.1 NetCDF-fortran/4.4.4 scalasca

#Build with instrumentation

GK_SYSTEM=archer MAKEFLAGS=-IMakefiles make FC="scalasca -instrument mpif90" COMPILER=gnu-
gfortran WITH_EIG= USE_NEW_DIAG= depend

<as previous with depend  -j gs2>

wget http://www-users.york.ac.uk/~dd502/scalasca/input.in

scan mpirun -np 2 ./gs2 input.in | tee OUTPUT

Scalasca – Demo

http://www-users.york.ac.uk/~dd502/scalasca/test.txt
http://www-users.york.ac.uk/~dd502/scalasca/test.txt
http://www-users.york.ac.uk/~dd502/scalasca/test.txt

