
Introduction to GPU
programming

Edward Higgins

What is a GPU?

What is a GPU

● “Graphics Processing Unit”
○ ...but they can be used for more than

just graphics

● Many lightweight computing cores

● Fast onboard memory

History of GPUs

‘70s - ‘80s Video requirements of computers start getting more
demanding => dedicated graphics hardware developed

‘90s - 2000s Discrete GPUs become available

Late 2000s People start trying to use GPUs for computations
(CUDA/OpenCL)

2010s GPU programming gains traction in the HPC market

Today Top 2 supercomputers in the world predominantly GPU based

GPUs vs CPUs

CPUs GPUs

of Cores Up to 64 100’s to 1000’s

Clock speed 2 to 5 GHz < 1 to 1.5 GHz

Memory Bandwidth Up to 100 GB/s 900GB/s (on-board)
32 GB/s (over PCIe)

Peak performance
(single precision)

Up to 2 TFLOPS Up to 15 TFLOPS

Typical node layout

Basic unit - the Streaming Multiprocessor

GPU made up of many SMs

How to program a GPU

What kind of problems work well on GPUs?

● Many independent parallel tasks

○ Ideally, number of tasks ≫ number of GPU cores

● Data parallelism - SIMD

● Small, computationally intensive kernels

● Examples: Linear algebra, Molecular Dynamics, Lattice

based/CFD

GPU basic workflow

1. Copy relevant data onto the GPU

2. Perform some computational kernel on that data

3. Copy the results off the GPU

Want to maximise time in (2) and minimise time in (1) and (3)

Example - the serial algorithm

do i = 1, N
new_grid(i) = grid(i+1) - 2*grid(i) + grid(i-1)

end do

do i = 1, N
grid(i) = new_grid(i)

end do

OpenACC/OpenMP

● Open standards

● Directives based - you’re giving the compiler “hints”

● CPU code is the same as the GPU code

● Supported in C, C++ and Fortran

Example - Fortran / OpenACC
!$ACC data copy(grid) create(new_grid)
!$ACC parallel vector_length(256)

!$ACC loop
do i = 1, N

new_grid(i) = grid(i+1) - 2*grid(i) + grid(i-1)
end do

!$ACC loop
do i = 1, N

grid(i) = new_grid(i)
end do

!$ACC end parallel
!$ACC end data

CUDA

● NVIDIA’s programming platform

● Kernel based - separate code for the GPU

● Explicitly copy data and launch kernels

● Supported in C, C++ and Fortran, with 3rd party wrappers
available for other languages

Example - CUDA C (Compute kernel)

// Function for each GPU thread to run
__global__ void do_stuff(float new_grid[N+2],

float grid[N+2])
{

// Get the element id for this particular thread
int i = blockIdx.x*blockDim.x + threadIdx.x + 1;

// Compute the new grid value for this element
new_grid[i] = grid[i-1] - 2*grid[i] + grid[i+1];

}

Example - CUDA C (Compute kernel)
// Specify the problem size
dim3 blocksPerGrid(N/256,1,1);
dim3 threadsPerBlock(256,1,1);

// Allocate memory on the GPU and copy in the grid
cudaMalloc(&new_gpu_grid, grid_size);
cudaMalloc(&gpu_grid, grid_size);

cudaMemcpy(gpu_grid, cpu_grid, grid_size, cudaMemcpyHostToDevice);

// Run the compute kernel
do_stuff<<<blocksPerGrid,threadsPerBlock>>> (float new_gpu_grid[N+2],

 float gpu_grid[N+2]);

cudaMemcpy(cpu_grid, new_gpu_grid, grid_size, cudaMemcpyDeviceToHost);

● Another open standard

● Kernel based - separate code for the GPU

● Explicitly copy data and launch kernels

● Supported in C and C++, with 3rd party wrappers
available for other languages

● Supports more than just GPUs (embedded graphics,
FPGAs etc…)

OpenCL

Example - OpenCL (Compute kernel)

// Function for each GPU thread to run
__kernel void do_stuff(__global float *new_grid,
 __global float *grid)
{

// Get the element id for this particular thread
int i = get_global_id(0) + 1;

// Compute the new grid value for this element
new_grid[i] = grid[i-1] - 2*grid[i] + grid[i+1];

}

Example - OpenCL (Compute kernel)
char *do_stuff_src = “

// Function for each GPU thread to run
__kernel void do_stuff(__global float *new_grid,

 __global float *grid)
{

// Get the element id for this particular thread
int i = get_global_id(0) + 1;

// Compute the new grid value for this element
new_grid[i] = grid[i-1] - 2*grid[i] + grid[i+1];

}
“;

Example - OpenCL (Compiling the kernel)
// Create a program with the kernel source from before
program = clCreateProgramWithSource (context, 1,
 (const char **) &do_stuff_src,
 NULL, &err
);

// Build the program
clBuildProgram(program, 0, NULL, NULL, NULL, NULL);

// Create a kernel called "do_stuff" from the program
*do_stuff = clCreateKernel(program, "do_stuff", &err);

Example - OpenCL (Copying in data)
// Allocate the device memory
gpu_grid = clCreateBuffer(context, CL_MEM_READ_WRITE , grid_size,
 NULL, &err);
new_gpu_grid = clCreateBuffer(context, CL_MEM_READ_WRITE , grid_size,
 NULL, &err);

// Copy the grid onto the GPU
clEnqueueWriteBuffer (queue, gpu_grid, CL_TRUE, 0, grid_size, cpu_grid,
 0, NULL, NULL);

Example - OpenCL (Running the kernel)
// Specify the arguments for the kernel
clSetKernelArg(do_stuff, 0, sizeof(cl_mem), &new_gpu_grid);
clSetKernelArg(do_stuff, 1, sizeof(cl_mem), &gpu_grid);

// Run the kernel
clEnqueueNDRangeKernel (queue, do_stuff, 1, NULL, N, 256, 0, NULL, NULL);

// Wait for the GPU to finish its work
clFinish(queue);

// Copy the data back off the GPU
clEnqueueReadBuffer (queue, new_gpu_grid, CL_TRUE, 0, grid_size,
cpu_grid,
 0, NULL, NULL);

● Several libraries can make use of GPUs

● Other people put the effort into optimising algorithms so
you don’t have to!

● Examples:

○ CuBLAS - LAPACK on the GPU

○ Tensorflow - Machine learning/AI

○ Thrust - Parallel algorithms

Using external libraries

How to get access to GPUs

● NVIDIA

○ GTX gaming series, okay for single precision calculations

○ Quadro workstation series, some have support for double
precision

● AMD have similar offerings in Radeon RX and Radeon Pro

● Intel expected to enter the game mid-2020

Desktop/workstation cards

● Viking has 8 NVidia V100 server GPUs

● Regional facilities:

○ JADE has 150+ V100 GPUs

○ Next-gen facilities will increase this capacity

● Amazon, Google and Microsoft cloud services provide VMs
with GPUs

Server / Cloud options

Summary

● GPUs provide a cost/energy efficient way of tackling certain
types of computational problem

● Maximising time computing and minimizing time transferring
data will generally give the best performance

● There are a range of technologies available for programming
GPUs, at many levels and with different amounts of control

● There are a range of options available for where you can use
GPUs

Summary

● Hardware information: https://devblogs.nvidia.com/inside-volta/
● Compilers:

○ PGI for OpenACC / CUDA: https://www.pgroup.com
○ CUDA Python: https://developer.nvidia.com/pycuda

● Libraries:
○ https://developer.nvidia.com/gpu-accelerated-libraries
○ https://www.tensorflow.org/
○ http://thrust.github.io/

● Server/Cloud facilities:
○ https://www.jade.ac.uk/
○ https://aws.amazon.com/ec2/
○ https://azure.microsoft.com

Useful links

https://devblogs.nvidia.com/inside-volta/
https://www.pgroup.com
https://developer.nvidia.com/pycuda
https://developer.nvidia.com/gpu-accelerated-libraries
https://www.tensorflow.org/
http://thrust.github.io/
https://www.jade.ac.uk/
https://aws.amazon.com/ec2/
https://azure.microsoft.com

