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What do we mean by ‘optimisation’?

Given a function, f(x):

What is the ‘best’ possible value of f(x)?
What inputs xopt give this ‘best’ output f(xopt)?

What do we mean by ‘best’?
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‘Best?’
Population of a species
Find the equilibrium population (stationary point)

Financial return from shares
Show me the money! Find the shares that give maximum profit
Energy of electrons in a crystal
Find the lowest energy state

It’s up to us! Usually want one of:

Minimum
Maximum
Specific value, f(x) = a

Stationary point, f(x) = x
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Optimisation

The function we wish to optimise is called the objective function.
Most optimisation problems can be converted into a minimisation problem, e.g.

Minimum: minimise f(x)
Maximum: minimise −f(x)
Specific value, a: minimise (f(x)− a)2

Stationary point: minimise (f(x)− x)2

We’ll focus on minimisation problems for the rest of the talk.
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Is this slide derivative?

There are two distinct classes of problem:

Derivatives known
Derivatives unknown

We’re going to focus on the first class, where we know the derivatives of f .
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Models with one variable

If we have a simple differentiable model of only one variable, then we can use
ordinary calculus.

f = f (x)

Differentiate to get df
dx

Find the stationary points df
dx

= 0
Classify stationary points (min, max, inflexion)

What if we can’t solve df
dx

= 0?
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Newton’s Method
Solve iteratively. At iteration i, Taylor-expand function about the current point
x(i):

f(x− x(i)) ≈ f(x(i)) + (x− x(i)) df
dx

∣∣∣∣∣
x(i)

+ 1
2(x− x(i))2 d

2f

dx2

∣∣∣∣∣
x(i)

= f(x(i)) + (x− x(i))f ′(x(i)) + 1
2(x− x(i))2f ′′(x(i))

Start iteration i = 0 with a guess x0, and update iteratively as:

x(i+1) = x(i) − f ′(x(i))
f ′′(x(i))
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Models with many variables

With N variables, this generalises to:

f = f (x1, x2, x3, . . . , xN)

Multivariate calculus: derivative is now a vector ∇f =
(
∂f
∂x1
, ∂f
∂x2
, . . . , ∂f

∂xN

)
Find the stationary points ∇f = (0, 0, . . . , 0)
Classify stationary points (min, max, inflexion, saddle point)

But solving ∇f = (0, 0, . . . , 0) can be extremely difficult!

Physics Coding Club|29th July 2019|8/23



Models with many variables

With N variables, this generalises to:

f = f (x1, x2, x3, . . . , xN)
Multivariate calculus: derivative is now a vector ∇f =

(
∂f
∂x1
, ∂f
∂x2
, . . . , ∂f

∂xN

)

Find the stationary points ∇f = (0, 0, . . . , 0)
Classify stationary points (min, max, inflexion, saddle point)

But solving ∇f = (0, 0, . . . , 0) can be extremely difficult!

Physics Coding Club|29th July 2019|8/23



Models with many variables

With N variables, this generalises to:

f = f (x1, x2, x3, . . . , xN)
Multivariate calculus: derivative is now a vector ∇f =

(
∂f
∂x1
, ∂f
∂x2
, . . . , ∂f

∂xN

)
Find the stationary points ∇f = (0, 0, . . . , 0)

Classify stationary points (min, max, inflexion, saddle point)

But solving ∇f = (0, 0, . . . , 0) can be extremely difficult!

Physics Coding Club|29th July 2019|8/23



Models with many variables

With N variables, this generalises to:

f = f (x1, x2, x3, . . . , xN)
Multivariate calculus: derivative is now a vector ∇f =

(
∂f
∂x1
, ∂f
∂x2
, . . . , ∂f

∂xN

)
Find the stationary points ∇f = (0, 0, . . . , 0)
Classify stationary points (min, max, inflexion, saddle point)

But solving ∇f = (0, 0, . . . , 0) can be extremely difficult!

Physics Coding Club|29th July 2019|8/23



Models with many variables

With N variables, this generalises to:

f = f (x1, x2, x3, . . . , xN)
Multivariate calculus: derivative is now a vector ∇f =

(
∂f
∂x1
, ∂f
∂x2
, . . . , ∂f

∂xN

)
Find the stationary points ∇f = (0, 0, . . . , 0)
Classify stationary points (min, max, inflexion, saddle point)

But solving ∇f = (0, 0, . . . , 0) can be extremely difficult!

Physics Coding Club|29th July 2019|8/23



Newton’s Method

At iteration i, Taylor-expand function about the current point x(i):

f(x− x(i)) ≈ f(x(i)) + (x− x(i))TG + 1
2(x− x(i))TB(x− x(i))

where G is the vector of first derivatives and B is the matrix of second derivatives,
called the Hessian.
Start iteration i = 0 with a guess x(0), and update iteratively as:

x(i+1) = x(i) − (B(i))−1G(i)
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Steepest Descents
It’s common for the Hessian (second derivative matrix) B to be unknown or too
expensive to compute and/or invert.
If we approximate the Hessian by a scaled identity matrix, 1

α
I, we get

x(i+1) = x(i) − B−1G
≈ x(i) − αG

What value of α is appropriate? It should be the mean eigenvalue of B−1 but we
probably don’t know that – α is a parameter of the method.
We could search for the optimal α...
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Steepest Descents

We want to find the minimum of the function f (x). First we pick a starting point
x0 (guess!), then:

1 Set x(i) = x0

2 Differentiate to get vector ∇f(x(i))
3 Search direction di = −∇f(x(i))
4 Move from x(i) along d to find minimum – line minimisation

xi+1 = x(i) + αdi
Find αopt that minimises f (xi+1)

5 Increment i and repeat from step 2
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Steepest Descent Example
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Preconditioning
The steepest descent method works, but convergence can be extremely slow. We
have a single parameter α to approximate the Hessian. It works best when all the
eigenvalues of the Hessian are the same, i.e. the function has the same curvature
in all directions (spherical contours).
If we can find a better approximation to the Hessian, particularly its eigenvalues,
then we can use that instead – called preconditioning.
Preconditioning is equivalent to a coordinate transformation; it is a transformation
which takes the Hessian and make its contours ‘more spherical’.
If we have an approximate Hessian A then the method is:

x(i+1) = x(i) − B−1G
≈ x(i) − αA−1G
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Preconditioned Steepest Descent Example
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Quasi-Newton Methods
After one iteration we have a new input {x(i)} and a new gradient {G(i)}. We
know

G(x(i+1)) ≈ G(x(i)) + B−1
(
x(i+1) − x(i+1)

)
so we can use this to approximate B −→ Quasi-Newton method.
For N variables, B is an N ×N matrix so we don’t have enough information to
determine it fully. There are many different proposals for how to construct an
approximate B, the most common are:

BFGS (and L-BFGS)
Broyden (class of methods)
Conjugate gradients

Each of these can be combined with preconditioning.
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Preconditioned Conjugate Gradients Example
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Constraints
Sometimes our solution might have to obey some constraints, for example:

Population of a species
Find the equilibrium population (stationary point)
Population must not be negative

Financial return from shares
Find the shares that give maximum profit
Amount to invest must not be more than our bank balance

Energy of electrons in a crystal
Find the lowest energy state
Number of electrons is constant
Must obey Pauli exclusion principle

Usually best to use method of Lagrange multipliers to make a modified objective
function.

Physics Coding Club|29th July 2019|17/23



Constraints
Sometimes our solution might have to obey some constraints, for example:

Population of a species
Find the equilibrium population (stationary point)
Population must not be negative

Financial return from shares
Find the shares that give maximum profit
Amount to invest must not be more than our bank balance

Energy of electrons in a crystal
Find the lowest energy state
Number of electrons is constant
Must obey Pauli exclusion principle

Usually best to use method of Lagrange multipliers to make a modified objective
function.

Physics Coding Club|29th July 2019|17/23



Constraints
Sometimes our solution might have to obey some constraints, for example:

Population of a species
Find the equilibrium population (stationary point)
Population must not be negative

Financial return from shares
Find the shares that give maximum profit
Amount to invest must not be more than our bank balance

Energy of electrons in a crystal
Find the lowest energy state
Number of electrons is constant
Must obey Pauli exclusion principle

Usually best to use method of Lagrange multipliers to make a modified objective
function.

Physics Coding Club|29th July 2019|17/23



Typical optimisation scenario

Optimise the set of objective functions

fi (x1, x2, . . . , xN)

subject to the set of constraints

gj (x1, x2, . . . , xN) = 0

to find the optimal inputs

x = (x1, x2, . . . , xN)
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Libraries?

Quasi-Newton methods
Several decent libraries, e.g. scipy
Preconditioning
Usually need to write this yourself
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Beyond conventional Quasi-Newton

There are challenges for standard quasi-Newton methods, e.g.

How to handle noise
Stabilised quasi-Newton methods (SQNM)
How to handle higher-order terms
How to control algorithmic greed
Greed is the name given to how ‘ambitious’ an algorithm is. A greedy
algorithm will make large changes to the inputs.

Increasingly, modern optimisation methods use trust regions.
Roughly speaking, a Trust Region is the neighbourhood of x where the quadratic
expansion is expected to be good.
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Special cases

There are two particular special cases worth mentioning:

f and g are linear in x −→ linear programming
xi are integers −→ integer programming

Each of these is a field in its own right!
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Multiple minima

If there is more than one minimum, how do we know the one we’ve found is the
lowest?

We don’t! Our methods will find the local optimum, i.e. the one closest to our
starting guess. We’d really like to find the actual optimum value, called the global
optimum. Many methods, e.g.

Monte-carlo
Basin-hopping
Genetic algorithms

We’ll cover some of these at a later date...
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Summary

Form an objective function f (x)
Form constraint functions gi (x) = 0
Transform to minimisation problem, e.g.

Maximum: f(x) = −E(x)
Target value, E0: f(x) = (E(x)− E0)2

Two distinct cases:
Derivatives known
Derivatives unknown
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