
Build Systems and Packaging
Peter Hill

Build Systems and Packaging||1/35

Build systems and packaging

For Python, pretty easy: setuptools and pip
For compiled languages, often trickier
Compiling one file from the command line is easy

Likewise two files, maybe three
Tens or hundreds of files unmanageable
So we have build scripts
Or fancier: Makefiles

Build Systems and Packaging||2/35

Before we begin

Two kinds of build systems:

Those that everyone complains about
Those that no one has heard of

Build Systems and Packaging||3/35

Portability

What do you do when you need to use different compilers?

ifeq ($(COMPILER),gcc)
gcc flags
endif
ifeq ($(COMPILER),intel)
intel flags
endif

Build Systems and Packaging||4/35

Portability

Or different systems have the libraries you need in different places?

ifeq ($(SYSTEM),mymachine)
york flags
endif
ifeq ($(SYSTEM),viking)
archer flags
endif

Build Systems and Packaging||5/35

Portability

Make is suddenly not the right tool for the job
What we need is a build system or build system generator

Confusingly, people use both terms to refer to different things
Let’s not get bogged down in terminology!

Something that’s take what we want to build and work out how to do it

Build Systems and Packaging||6/35

GNU Autotools
The grandmother of build systems

You’ve seen it before:
$./configure
$ make
$ make install
If you like shell scripts, you’ll love Autotools
Actually a family of related tools: autoheader, autoconf, automake, etc.
Designed to generate Makefiles portable across POSIX systems

Not so useful if you want to also compile on Windows or other weird OSes
Takes care of a whole bunch of standard things:

Different compilers, MPI, etc.
Install locations
make clean, make install, make uninstall

Surprisingly easy to get started!

Build Systems and Packaging||7/35

Hello World with Autotools
The basics

1 Write a simple “Hello World” program in your favourite compiled language
#include <iostream>
int main() {

std::cout << "Hello, World!\n";
}

2 Try running make hello (assuming your file is called hello.?? and is in C or
C++)

3 Make Makefile.am with:
bin_PROGRAMS = hello
hello_SOURCES = hello.cpp

4 Run autoscan. This will automagically create a file called configure.scan –
rename configure.scan to configure.ac

Build Systems and Packaging||8/35

Hello World with Autotools
The basics

5 Open configure.ac and put:
AM_INIT_AUTOMAKE([-Wall -Werror foreign])
on the line after AC_INIT

For Fortran, you’ll also need to add AC_PROG_FC on the line after
AM_INIT_AUTOMAKE as well

6 Run autoreconf -fvi
7 Now run ./configure then make
8 Out of source builds are automatically supported:

1 make distclean
2 mkdir build && cd build
3 ../configure --prefix=$(pwd)/install
4 make install
5 install/bin/hello

Build Systems and Packaging||9/35

What have we done?

Makefile.am
This file tells automake what you want to build, and what is needed to build it
bin_PROGRAMS: A list of PROGRAMS to install in bin
hello_SOURCES: The list of SOURCES needed to build hello
You can add other “normal makefile” stuff here too

e.g. Fortran dependency generation
automake takes care of all the “usual” targets

autoscan
Makes a bare-bones configure.scan based on your project layout

Build Systems and Packaging||10/35

What have we done?

configure.ac

These AC_* variables are macros
They get replaced by some literal text, possibly after doing something with their
arguments
Important ones:

AC_PROG_CC/AC_PROG_CXX/AC_PROG_FC: Look for a C/C++/Fortran compiler and
check it works!
AC_CONFIG_FILES([Makefile]): Create a file called Makefile from a file
Makefile.in

Other macros for searching for libraries and checking they work
Find MPI, check your compiler supports C++11, F2008, etc.

Build Systems and Packaging||11/35

What have we done?

autoreconf
autoreconf looks for all the important input files and runs all the important
autotools programs on them in the correct order
Creates Makefile.in from Makefile.am
Creates configure from configure.ac
Neither of these generated files are supposed to be human-readable!
Also brings in a whole bunch of other files that we won’t get into

Build Systems and Packaging||12/35

What have we done?

configure

Takes Makefile.in and makes Makefile for your actual system, your compilers,
libraries, etc., along with where you want to build and install it

Makefile
The thing we actually want!
Now we can finally compile the program

Build Systems and Packaging||13/35

CMake

CMake is newer than Autotools, but has been around since 2000
CMake 3.0 introduced some nicer features in 2014

“Modern” CMake
CMake is a “build system generator”

Can make Makefiles as well as a whole bunch of other types, e.g. Ninja
Works very well with a huge range of IDEs

Works well with dependencies, especially if they also use CMake

Build Systems and Packaging||14/35

Hello world with CMake

1 Copy your simple hello world program to a new directory
2 We need a CMakeLists.txt file with three lines:

cmake_minimum_required(VERSION 3.10)
project(my_hello VERSION 0.1 LANGUAGES CXX) # Or C or Fortran
add_executable(hello hello.cpp)

3 Now make a build directory and cd into it
Prefer out-of-source builds

4 cmake .. instead of configure
5 make && ./hello as usual
6 Alternatively, cmake --build . && ./hello

Build Systems and Packaging||15/35

What have we done?

CMakeLists.txt
This is the equivalent of autotool’s configure script, only in the CMake language
cmake_minimum_required sets the minimum version of CMake. You should try to
use the most recent version if you can

pip3 install --user cmake!
project defines a project and the languages it uses. CMake will find the compilers.
add_executable defines an executable and its source files

Build Systems and Packaging||16/35

Something a bit more complicated

libsay
1 Move the “Hello, World” bit of your program into a new function in a separate file
2 Organise your project a bit like this:

+-- CMakeLists.txt
+-- include
| +-- libsay
| +-- say.hpp
+-- src

+-- hello.cpp
+-- libsay

+-- say.cpp
hello.cpp and say.cpp should both #include "libsay/say.hpp"
Fortran doesn’t need the include directory

Build Systems and Packaging||17/35

Something a bit more complicated

libsay
We need to add a few lines to our CMakeLists.txt:

add_library(say src/libsay/say.cpp include/libsay/say.hpp)
target_include_directories(say PUBLIC include)

add_executable(hello src/hello.cpp)
target_link_libraries(hello PRIVATE say)

Build Systems and Packaging||18/35

Something a bit more complicated

Installing
CMake needs to be told what to install and where

set_property(TARGET say
PROPERTY PUBLIC_HEADER include/libsay/say.hpp)

install(TARGETS hello say
EXPORT libsay
ARCHIVE DESTINATION lib
LIBRARY DESTINATION lib
RUNTIME DESTINATION bin
PUBLIC_HEADER DESTINATION include)

Build Systems and Packaging||19/35

Something a bit more complicated

libsay
CMake takes options with -D, such as
-DCMAKE_INSTALL_PREFIX=$(pwd)/install (to install files under ./install)
or -DCMAKE_BUILD_TYPE=Debug (for debug flags)
List all options with cmake -LH
Try just running make install again from your build directory!
ccmake is a slightly fancier TUI

Build Systems and Packaging||20/35

What have we done?

add_library

Creates a new library as a target. We can control whether its built as a shared or
static library either with the explicit SHARED/STATIC keywords or with
BUILD_SHARED_LIBS option

target_include_directories

Sets the “include directories” property of its target, and whether we only need them
to build the target itself (PRIVATE) or if we also need them when we want to use
the target (PUBLIC)

Build Systems and Packaging||21/35

What have we done?

target_link_libraries

Tells CMake to link the target against the listed libraries. This can be another
CMake target or an external library
This adds all the information about the library to the target, e.g. the include
directories

set_property

Sets further properties on a target or other object

Build Systems and Packaging||22/35

What have we done?

install
Just lists what targets should be installed and where to
ARCHIVE for static libraries
LIBRARY for shared libraries
RUNTIME for binaries
PUBLIC_HEADER for headers

Build Systems and Packaging||23/35

Meson

New comer, first release 2013
Python-like syntax
Very fast, simple things are very simple
Uses Ninja build system rather than Makefiles
Can automatically fetch and compile dependencies through its “wrap” system

Build Systems and Packaging||24/35

Hello World with Meson

1 Start off with your simple “Hello world” single file
2 Make meson.build with the following two lines:

project('hello', 'cpp') # or 'c' or 'fortran'
executable('hello', 'hello.cpp')

3 Create a build directory:
$ meson build

4 From the build directory, run ninja:
$ ninja && ./hello

Build Systems and Packaging||25/35

libhello

1 Copy your librarified “hello world”
2 Update your meson.build file

incdir = include_directories('include')
lib = shared_library('say', 'src/say/say.cpp',

include_directories: incdir)
executable('hello', 'hello.cpp', link_with: lib,

include_directories: incdir)

Build Systems and Packaging||26/35

What have we done?

project

Defines a project and what languages it uses

executable
Defines an executable and its source files
Targets in Meson are immutable: you have to define all their properties when you
create them

What libraries to link against
What directories to include

Build Systems and Packaging||27/35

What have we done?

include_directories

Defines directories to be included

shared_library

Defines a shared library

Build Systems and Packaging||28/35

Python

setup.py
Python packaging (mostly) a lot simpler
Has it’s own complications
Write a setup.py at the top-level
Enables installing with pip

Build Systems and Packaging||29/35

Hello World with Python
Project layout

+-- setup.py
+-- hello

+-- __init__.py
+-- hello.py

Files
__init__.py
from .hello import hello

hello.py
def hello():

print("Hello, World!")

Build Systems and Packaging||30/35

Hello World with Python

setup.py
from setuptools import setup

setup(name="hello",
version="0.1",
packages=["hello"],

)
Now you can install with pip install --user -e .
-e argument makes it “editable”: no need to reinstall while you develop

Build Systems and Packaging||31/35

Slightly fancier Python Package

Package + executable
setup(name="hello",

version="0.1",
packages=["hello"],
entry_points={

"console_scripts": [
"hello = hello.hello:hello"]},

)

Build Systems and Packaging||32/35

Other setup options

Requirements
install_requires: other packages and their versions
extras_require: optional packages
python_requires: which versions of Python are required

Metadata
author
description, long_description
url
classifiers

Build Systems and Packaging||33/35

Python distribution

Make it installable from (almost) anywhere in the world
pip3 install --user --upgrade setuptools wheel twine
python3 setup.py sdist bdst_wheel

Makes “wheel” and tarball for distribution
twine upload dist/my-package-0.1.0*

Uploads package to PyPI
You’ll need account first!

Build Systems and Packaging||34/35

Further reading
Autotools

https://www.lrde.epita.fr/~adl/dl/autotools.pdf

CMake
https://cliutils.gitlab.io/modern-cmake/

Meson
https://mesonbuild.com/

Python
https://setuptools.readthedocs.io/en/latest/setuptools.html
https://packaging.python.org/tutorials/packaging-projects/

Build Systems and Packaging||35/35

