¢ 12 UNIVERSITY

Writing Good Research Software

Peter Hill

Writing Good Research Software||1/2:

Physics Coding Club

Weekly, one hour informal seminar or two hour practical session
Open to everyone!
Upcoming topics:

Hands on intro to version control

Hands on testing

Containers

Cloud Computing

Project structure

https://physicscodingclub.github.io/

Writing Good Research Software||2/2:

What is Research Software?

Software used to generate, process or analyse results
Might be enormous 100k lines of complex simulation code
Might be 100 lines for pulling data off of instrument
Might be 10 lines to plot results

Could even be a spreadsheet!

Writing Good Research Software||3/2:

Why is Research Software important?

From a 2014 survey:

90% of researchers use research software
70% said they couldn’t do their research without it

=> Most modern research is impossible without some form of software!

Writing Good Research Software||4/2:

Why is good Research Software important?

It's important to be able to trust the results are correct
If the results are possibly wrong, then the research is suspect
If the research is suspect, it's not science!

Writing Good Research Software| |5 /2:

What goes into good research software?

“Trustable correctness”
Easy to use

Easy to maintain
Portable

Efficient

Under version control

Sustainability

“The capacity for software to endure” - Daniel S. Katz

Writing Good Research Software||6/2:

How to write good software

HOW TO WRITE GOOD CODE:

THRoW 1T ALL OUT
AND START OVER.

Writing Good Research Software||7/2:

Why use tests?

All software contains bugs!

Tpyos
Maths errors
m Wrong equations used?

Logic errors

m Code doesn’'t do what you think it does
Edge-case errors

m Unforeseen sets of circumstances

Writing Good Research Software||8/2:

Not just a theoretical concern!

Bugs have real world consequences:

Software on Mars Climate Observer mixed up metric and imperial measurements

Bug in Therac-25 radiation therapy machine delivered “massive overdoses of
radiation”

F-22 Raptor aircraft crashed due to software “malfunction”
Citigroup fined £5m for mistaking real data for test data for 15 years

Writing Good Research Software||9/2:

Tests are vital

Tests let you prove that the software is correct

Tests provide trust that the research is correct

Tests give you confidence to make changes to the code
Often faster to write tests first

If it doesn’t have tests, it's wrong!

Writing Good Research Softwarel||10/2

Testing software

Types of tests

Static analysis: checking the source code
Runtime testing: checking program is still in a “good state”

Unit testing: checking individual parts of the code are correct
System/integrated testing: checking the program as a whole is correct

Writing Good Research Software||11/2

Runtime testing

Most runtime checking can be thought of as either a precondition or a postcondition

Preconditions

m Things that must be true of function inputs:
def square_root (number) :

if number < O:
raise ValueError("Can't take square root of negative number")

Writing Good Research Softwarel||12/2

Runtime testing

Postconditions

m Things that must be true of function results:
def square_root (number) :

if result < O:

raise ValueError("Result of square root was negative somehow")

return result

Writing Good Research Softwarel||13/2

Runtime testing

Advantages

m Always there!

m Catch errors and unexpected edge cases early, before they escalate

Disadvantages

m Have to decide if we can carry on or if should we just give up

m Can slow things down

Writing Good Research Software||14/2

Unit testing

Catch bugs as soon as possible
Preferably during development!

Test individual components

Test range of inputs

If the building blocks are correct, the whole thing is more likely to be correct
Good test coverage helps you make changes

Writing Good Research Software||15/2

Unit testing

An example

def test_square_root_4():
assert square_root(4) ==

def test_square_root_minus4():
with raises(ValueError):
square_root (-4)

Writing Good Research Softwarel||16/2

Unit testing

Comparison to known values

m Best to compare to some analytic or exact result
m Might be a simpler problem
m Might be a carefully constructed problem

m Can you compare to a “known good” result?

From a different implementation?
different algorithm?

different software?

previous version?

be difficult with scientific software, we might not know the correct answer!

Writing Good Research Softwarel||17/2

Unit testing

Logic checking

m Does the answer make physical/mathematical sense?
m Does the molecule have positive mass? Is it travelling slower than the speed of light?
m Does the particle move in the correct direction under these forces?

m s the inverse of the inverse the identity transform?

m Does the answer make programmatic sense?
m Is the average of a set of numbers less than the maximum value?
m Does appending a value increase the size of the container?

Writing Good Research Software||18/2

What is version control?

< -~ | BB 55 99 Q rfind [preview [T split = control

Root > tmp > important_work

B Network work.txt work_02.txt work_final.txt work_final_02.txt

it Home
Root

[l wastebin
Documents

£ Downloads

primary
89.4 GiB Hard Drive

primary
primary
primary

& 1.8 TiB Removable Media

4 Files (0B) 4.2 GIB free

Writing Good Research Software||19/2

What is version control?

Version control systems record changes to a file/set of files over time
Not just software! This talk is under version control
Allows you revert files back to a previous state, compare changes over time, see who
last modified something, etc.

Instead of keeping multiple copies of the same file, normally just store the
differences ("diffs") between versions of the files

Writing Good Research Software||20/2

Why is version control important?

Tracking versions
Know instantly which is the latest version
Roll back to previous versions
See history of project/file/line
Find out when bugs were introduced
Maintain/compare different versions
Coordination between developers
Easier to keep track of when changes are made
Easier to work on separate features
Easier to merge distinct changes from separate developers
Easier to resolve conflicts on same features
Tracking who made what changes

If it's not under version control, it doesn’t exist!

Writing Good Research Software||21/2

Documentation

Good documentation makes software easier to use and easier to maintain

Documentation is for you in six months!

Everyone hates writing documentation; everyone hates missing documentation

What counts as documentation?
A “README" file
An instruction manual
A reference manual
Code comments
Names!
Version control commits

Writing Good Research Software||22/2

Naming things

Readability counts!

Help reduce cognitive load required to understand
Don't needlessly abbreviate

Don't just type up maths

Example

def calcf(r, p):

def calculate_force(position, momentum) :

Writing Good Research Software||23/2

Resources

Physics Coding Club!
https://physicscodingclub.github.io/
Research Computing Training and Support

https://wiki.york.ac.uk/display/RCTS/Research+Computing+Training+and+Support
Research Software Engineering Association
https://rse.ac.uk/events/rse-webinar-series/

Software Sustainability Institute
https://software.ac.uk/
Working Effectively with Legacy Code by Michael C. Feathers
Some material in this talk adapted from https://chryswoods.com/talks

Writing Good Research Software||24 /2

