
Physics Coding Club
- Floating Point Numbers

Prof Matt Probert
http://www-users.york.ac.uk/~mijp1

Overview
•  Floating point numbers and representation

•  Floating point algebra

•  IEE754 to the rescue

•  Consequences for numerical programming

Simple observation
•  Have you ever wondered why

 0.1 + 0.2 = 0.30000000000004 ???
•  Computers use binary floating point

– Not every number is representable
 0.1 + 0.4 = 0.5

– Some numbers ARE representable!
–  Including all integers …

•  The answer is the closest number that fits
•  Answer has a rounding error as a result

Fixed Point Representation
•  How to represent non-integer real numbers in

a computer?
–  Could represent as integers with the decimal point

after a fixed number of digits, e.g.
 12.7 à 0012.7000 stored as 00127000

 2345 à 2345.0000 stored as 23450000
 0.045 à 0000.0450 stored as 00000450

–  Can include negative numbers using signed (one
bit for sign) integers or “two’s-compliment”

•  But what about 1,349,193? or 0.00000074?
–  Limited range with a given number of digits

A Floating Point Representation
•  Base-10 “scientific notation”

–  E.g. write every number as a 4-digit mantissa and a 2-
digit signed exponent, i.e. ± 0.xxxx x 10 ±xx

e.g. 0.1000 x 101 or 0.6626 x 10-33

–  By convention, the mantissa M is restricted to the range
0.1 ≤ M < 1, i.e. leading digit is zero, hence the
significand is the mantissa without leading digit

•  Hence can only represent 4 million distinct
numbers
104 (with mantissa) x100 (with exponent) x2 (with ± sign

for mantissa) x2 (with ± sign for exponent) = 4x106

•  Largest number is 0.9999 x 1099 and smallest is
0.1000 x 10-99 (or 0.0001 x 10-99 if we do not mind
losing precision in the mantissa)

Fractions
•  Computers work in base-2 and not base-10, which

has some interesting consequences for fractions
•  Binary numbers e.g.

–  1710 = 16 + 1 = 1x24 + 0x23 + 0x22 + 0x21 + 1x20 = 100012

•  Binary fractions follow trivially from decimal
e.g. 0.62510 = 1/2+1/8 = 1x 2-1 + 0x 2-2 + 1x 2-3 = 0.1012

•  But note that whilst any finite binary fraction is also a
finite decimal fraction, the reverse is not true,
e.g. 0.210 = 1/8 + 1/16 + 1/128 + 1/256 + 1/2048+ 1/4096 +…

 0.001100110011…..2

•  Need infinite computer to store 0.2
–  accept finite precision: 0.0011001100112 ≈ 0.199951110

Floating Point Algebra
•  Now return to our base-10 floating point format
•  Consequence of finite representation is a

change to the normal rules of algebra, e.g.
•  A+B=A does not imply B=0

 0.1000x10+01 + 0.4000x10-03 = 0.1000x10+01

•  (A+B)+C is not equal to A+(B+C)
(0.1000x10+01 + 0.4000x10-03)+ 0.4000x10-03

= 0.1000x10+01+0.4000x10-03 = 0.1000x10+01
but
0.1000x10+01 + (0.4000x10-03 + 0.4000x10-03)
= 0.1000x10+01+0.8000x10-03 = 0.1001x10+01

More Algebra …

•  √A2 is not equal to |A|
√(0.1000x10-60) 2 = √(0.0100x10-99) = 0

•  A/B is not equal to A * (1/B)
 0.6000x10+01 / 0.7000x10+01 = 0.8571x10+00

 0.6000x10+01 x(1/0.700x10+01) = 0.6000x10+01 x
0.1429x10+00
 = 0.8574x10+00

•  Whilst we have illustrated the point with a
simple base-10 encoding, the same is true for
any finite representation, including that which is
actually used inside most computers …

Consequences

•  All of the above has severe consequences
for numerical codes

•  And if different computer hardware has
different internal representations, with
different storage formats and rules for
handling over/underflow, etc. it can have
severe consequences for code portability.

•  And accuracy of results!

IEEE 754 Standard
•  Before 1985 every computer manufacturer chose

their own way of representing floating point
numbers based on different trade-offs of speed
vs. accuracy
–  No scheme can ever be perfect, but IEEE 754 is based

on a lot of experience and is now almost universally
used. Benefit is portability of floating point environment
– should get repeatable results on any system.

•  The standard specifies storage formats, precise
specifications for results of operations, special
values and specifies runtime behaviour on illegal
operations.

•  Java does not support IEEE 754 – hence “write
once, run anywhere” does not imply “write once,
get the same results everywhere”!

IEEE Storage Format

† F90 has a much nicer, portable way of defining precision
using kind mechanism

‡ x86 CPU has 80-bit registers which can cause problems if
only using first 64-bits with a standard double variable …

¶ Cray traditionally has 64-bit “single” and 128-bit “double”
types

F77† C Bits‡ Exponent
Bits

Mantissa
Bits

Single Real*4 Float 32 8 24
Double Real*8 Double 64 11 53
Extended
double¶

Real*10 Long
double

≥80 ≥15 ≥64

IEEE Floating Point Range

* Can also have denormalised numbers that are smaller
† Can also have ∞ if overflow largest number

Remember these limits correspond to largest and smallest numbers

representable with BINARY NOT DECIMAL digits.

Smallest
normalised
number*

Largest
finite
number †

Base-10
accuracy

Single 1.2*10-38 3.4*10+38 6-9 digits
Double 2.2*10-308 1.8*10+308 15-17

digits
Extended
double

3.4*10-4932 1.2*10+4932 18-21
digits

Different Kinds of Zero
•  Can represent 0 exactly with this scheme

–  But what about 0.1000x10-99/0.1000x10+10 ?
–  Whilst the real answer is non-zero it is smaller than the

smallest representable number and hence is an underflow.
It must be represented as zero, but can have a sign!

–  What about 0.1000x10-99/2 ?
•  Should it be kept as 0.0500x10-99 (breaks the 0.1 ≤ M < 1 rule)
•  or should it be set to zero?

–  The former is an example of a denormalised number and
can be used to give gradual underflow, but with loss of
precision. Can also decide to flush denormals to zero.

–  Some processors barf on denormalised numbers, signal an
error and a special software routine is invoked to handle the
situation with great cost in time. This, together with loss of
precision, is why some CPUs prefer to flush them to zero.

Fortran 90+ Support
•  Fortran 90 introduced the kind mechanism by

which an integer parameter can set floating point
format, e.g.
–  default single precision:

integer, parameter :: sp = kind(1.0)
–  default double precision:

integer, parameter :: dp = kind(1.0d0)
–  Select a format in which there are at least 15 digits of

precision in the mantissa and the exponent can be at
least –300 to +300 in a fully portable way:

integer, parameter :: mykind =
selected_real_kind(p=15,r=300)

•  Can then declare variables and set values using
these formats e.g.
real(kind=dp) :: x

x = 1.9763_dp

Ensures all arithmetic /
storage in double precision.

IEEE Operations
•  Standard requires that all simple arithmetic

operations return the nearest representable
number to the true result by default
– Flexibility for CPU designer in how to do this
– Consequently a+b=b+a and a*b=b*a

•  Also specifies rules for truncation and
rounding using two guard bits

Guard Digits (I)
•  Consider our simple format with four digit

significand and 2-digit exponent:
•  Add 0.5281x10+02 and 0.9650x10+04

•  Equal exponents : 0.0052x10+04 + 0.9650x10+04

•  Add mantissas : 0.9702x10+04
•  Adjust exponent : 0.9702x10+04

•  BUT true answer is 0.9703x10+04 (round to
nearest)!

Guard Digits (II)
•  Keep memory storage format the same but use

two extra digits within the CPU’s floating point
unit:

•  Add 0.5281x10+02 to 0.9650x10+04

•  Equal exponents : 0.005281x10+04 +
0.965000x10+04

•  Add mantissas : 0.970281x10+04
•  Adjust exponent : 0.970281x10+04

•  So now the true answer 0.9703x10+04 is stored.

IEEE Special Values
•  Certain bit-patterns are reserved for representing

special values in all bit-lengths
–  Infinity, resulting from overflow, is represented with all

mantissa bits=0, all exponent bits=1. Treated according
to rules of maths, e.g. dividing a non-zero number by
infinity will result in zero.

–  NaN (Not a real Number), resulting from 0/0 etc is
represented as infinity with non-zero mantissa. It
indicates a value that is not mathematically defined. Any
operation involving NaN has NaN as the result.

–  Denormalised numbers have all exponent bits=0 and all
bits of mantissa are stored. Can be handled in hardware
or software.

–  Zero has all bits set to zero but can have sign bit for ±0

IEEE Exceptions and Traps
•  IEEE standard enables programmers to detect
when special values are produced, so can write
more robust code.
–  Manually write trap handling code for each event for each
event, such as overflow to infinity, underflow to zero, division
by zero, invalid op, inexact op, etc. Routine names non-
standard between compilers/platforms – not portable.
–  Fortran2003 includes this as standard.
–  Can be implemented by compiler itself and have large cost
if triggered, so best not! Hence usually off by default.
•  NB Traps can also be handled by capturing
kernel signals.
–  This is straightforward in C, but can also be done in non-
portable way in Fortran by linking to system library signal
function (Unix and CVF under Win32) to catch SIGFPE =
SIGnal Floating Point Exception, etc.

Types of Exception
•  Invalid operation, e.g.
∞ – ∞ or 0*∞
0/0 or ∞/∞
√x where x < 0

•  Division by zero
•  Overflow
•  Underflow
•  Inexact – triggered when precision is

lost.

What do we want?
•  Generally considered useful for program to

abort for overflows or NaN but not for underflow
–  In Fortran, overflow/NaN will usually cause a stop
–  In C, program will carry on regardless – beware!

•  NB integer overflow causes wraparound and is
usually silent – a 4-byte integer can store
2147483647 to -2147483648, so
2147483647+1 = -2147483648 !

•  NB Conversion of floating point to integer, when
float is greater than largest possible integer, can
do almost anything. In Java, it will simply return
the largest possible integer.

So What?
•  Implications for optimising compilers

–  Mathematically valid code rearrangements can produce
numerically different results

–  Good compilers should have flags that enforce strict
IEEE compliance – use them!

–  When turning on optimisation, should always
benchmark code against un-optimised version – both
for timing and for numerical results – see later lectures.

•  Implications for writing code and algorithms
–  Be VERY careful before use single-precision for

mathematical code
–  Always use appropriate units s.t. quantities are of

magnitude ~ unity and not 10-34 etc.

Summing Numbers
Consider summing this series forwards (1..N) and
backwards (N..1) using single-precision arithmetic

∑
=

N

n n1
1

N Forwards Backwards Exact
100 5.187378 5.187377 5.187378
1000 7.485478 7.485472 7.485471
10000 9.787613 9.787604 9.787606
100000 12.09085 12.09015 12.09015
1000000 14.35736 14.39265 14.39273
10000000 15.40368 16.68603 16.69531
100000000 15.40368 18.80792 18.99790

Counting forwards is silly as 15+x=15 for x ≤ 5x10-7 i.e.
total stops growing after around 2 million terms

The Logistic Map ()nnn xxx −=+ 141

n Single Double Correct
0 0.5200000 0.5200000 0.5200000
1 0.9984000 0.9984000 0.9984000
2 0.0063896 0.0063898 0.0063898
3 0.0253952 0.0253957 0.0253957
4 0.0990019 0.0990031 0.0990031

10 0.9957932 0.9957663 0.9957663
20 0.2214707 0.4172717 0.4172717
30 0.6300818 0.0775065 0.0775067
40 0.1077115 0.0162020 0.0161219
50 0.0002839 0.9009089 0.9999786
51 0.0011354 0.3570883 0.0000854

NB Even with only 3 FP operations per cycle, double is doomed after 50 cycles!

Quadratic Formula
•  E.g. 30x2 + 60.01x + 30.01 = 0 has roots at
 x = -1 and x = -3001/3000
•  Single-precision arithmetic and above formula

gives no roots at all!
30.01 is represented as 30.0100002289
60.01 is represented as 60.0099983215 hence
b2=3601.199899… not 3601.2 and 4ac=3601.2001

•  Using double-precision is not always the answer –
the following C program gives no roots with K&R
C-compiler and repeated roots with ANSI C!
void main(){
 float a=30,b=60.01,c=30.01; double d;
 d=b*b-4*a*c;
 printf(“%18.15f\n”,d);

}

a
acbbx

2
42 −±−

=

Complex Data Types
•  CPU only handles real numbers

–  Certain languages (e.g. FORTRAN) allow a complex
data type

–  Other languages (e.g. C and Java) implement it via
(sometimes controversial) libraries

•  Complex addition/subtraction is simple but not
multiplication:
(a+ib) * (c+id) = (ac-bd) + (bc+ad)i
–  What happens if ac-bd is less than the maximum

representable number but ac is not?
–  What precision problems will we have if ac≈bd?
–  Non-trivial problems to consider …

Complex Division

•  This definition is almost useless!
–  If the largest representable number is Nmax then this

formula will erroneously produce zero when dividing by
any complex number z with |z|>√Nmax

–  Similarly, if Nmin is the smallest representable number
then this formula will give ∞ with |z|<√Nmin

•  There are also issues with disregarding the sign of
±0.0 which results in violation of certain identities,
such as √(z*) = (√z)* whenever Re(z)<0.0
–  Kahan argues this is inevitable in Fortran and C/C++

where complex is implemented as binary (x,y) pair and
not as x+iy with a proper imaginary class. F95 can fix this.

() ()
22

 i
i
i

dc
adbcbdac

dc
ba

+

−++
=

+

+

Hints: Operations to Avoid
•  Divides

– Multiply by 0.5 instead of dividing by 2.0
•  Trig – never do y=sin(x)**2 ; z=cos(x)**2

Instead: y = sin(x)**2; z = 1.d0 - y
•  Square roots - never do if (sqrt(x) < y)

– Use if (x < y*y) if sure about signs.
•  Powers – never do y = x**3.0

– Will use microcode / library valid for any non
integer power.

– Use y = x**3 or y = x*x*x

Comparison

•  Most floating point numbers are imprecise
– The same number calculated using two

different sums is quite likely to be different
A=0.1 + 0.2; B=0.15 + 0.15; Is A=B?

•  Hence should NEVER test for equality of
reals!
– Simple fix is to test if abs(difference) is small
– Tricky – how small is small enough?

Error Propagation

•  Whilst error in a single FP calculation is
small, this can accumulate if repeated

•  Need to understand how errors propagate
through your algorithm
– Usually worse with + or - than * or /
– Understand epsilon
– And different implementations can be either

stable or unstable
– Numerical Analysis

Quadratic Equation revisited

•  How to solve ?

•  Std method:
•  Alt method:

•  Problem: either std or alt method will
sometimes fail – when either a or c (or
both) are small then have issues with b-b
with a significant loss in precision

ax2 + bx+ c = 0

x =
�b±

p
b2 � 4ac

2a

x =
2c

�b±
p
b2 � 4ac

q = �1

2

h
b+ sgn (b)

p
b2 � 4ac

i

x =
q

a
and x =

c

q

1

ax2 + bx+ c = 0

x =
�b±

p
b2 � 4ac

2a

x =
2c

�b±
p
b2 � 4ac

q = �1

2

h
b+ sgn (b)

p
b2 � 4ac

i

x =
q

a
and x =

c

q

1

ax2 + bx+ c = 0

x =
�b±

p
b2 � 4ac

2a

x =
2c

�b±
p
b2 � 4ac

q = �1

2

h
b+ sgn (b)

p
b2 � 4ac

i

x =
q

a
and x =

c

q

1

Quadratic Equation solved

•  So need to find a method that does NOT
involve b-b type expression

•  Solution:

•  E.g. a=c=1E-6,b=100; analytic x2=-1E-8
•  dp math with std formula has x2=-7.1E-9;

this q form has x2=-1E-8

ax2 + bx+ c = 0

x =
�b±

p
b2 � 4ac

2a

x =
2c

�b±
p
b2 � 4ac

q = �1

2

h
b+ sgn (b)

p
b2 � 4ac

i

x =
q

a
and x =

c

q

1

ax2 + bx+ c = 0

x =
�b±

p
b2 � 4ac

2a

x =
2c

�b±
p
b2 � 4ac

q = �1

2

h
b+ sgn (b)

p
b2 � 4ac

i

x =
q

a
and x =

c

q

1

Further Reading
•  Chapter 4 of “High Performance Computing

(2nd edition)”, Kevin Dowd & Charles
Severance, O’Reilley (1998).

•  “What Every Computer Scientist Should Know
About Floating-Point Arithmetic”, by David
Goldberg in ACM Computing Surveys (Mar 91)
http://portal.acm.org/citation.cfm?id=103163

•  Walter Kahan’s homepage (one of the
designers of IEEE 754)
http://www.cs.berkeley.edu/~wkahan

