

Physics Coding Club More Fast Fourier Transforms

Phil Hasnip phil.hasnip@york.ac.uk

Physics Coding Club|July 2018|1/22

Fourier Series

Recall: Any 'sensible' 1D periodic function with period L may be expressed as a Fourier series:

$$f(x) = \sum_{G=-\infty}^{\infty} c_G e^{\frac{2\pi i G x}{L}}$$

where i is the imaginary number, G is an integer and c_G are complex coefficients. Note:

- Fourier series are continuous everywhere
- Derivatives of Fourier series are also Fourier series
 - \rightarrow Derivatives are continuous everywhere
 - \rightarrow Fourier series are differentiable everywhere

Physics Coding Club|July 2018|13/22

Physics Coding Club|July 2018|14/22

Any 3D periodic function may be expressed as a Fourier series:

$$f(\mathbf{r}) = \sum_{n=-\infty}^{\infty} c_n e^{i\mathbf{G_n}\cdot\mathbf{r}}$$

where c_n are (usually) complex and G_n are the Fourier wavevectors.

A 3D FFT may be performed as 3 separate sets of 1D FFTs, e.g. transforming the entire data in z, then y and then x.

Beyond the FFT

Parallel FFT

- Non-uniform FFT
- Fractional FFT
- FFT with derivative information?

We'll only look at the first two here.

Parallel FFT

Each core only has some of the Fourier components
Each core only has some of the real-space points
Fourier transform: *all* Fourier components contribute at *all* points in real-space.

Fourier component parallelism

- 3D transform can be performed as 3 1D transforms
- Give each core all Fourier components in a column in z
- Each core does transform in z
- All cores swap data so they have y-column data
- Each core does transform in y
- All cores swap data so they have x-column data
- Each core does transform in x
 - \longrightarrow Each core ends up with real-space data in x

3D FFT in parallel

- Actual (1D) transforms distribute well
- Transpositions are a problem
- Every core has to communicate with every other core!

 → as N_{core} increases, Fourier transform will dominate.
 → when the communication time is comparable to the compute time, there's no point using more cores.

Parallel bottlenecks

- Ultimate scaling dominated by all-to-all communications
- **•** Number of messages increases as N_{cores}^2
- Size of messages decreases as $\frac{1}{N_{emax}^2}$
- Particularly problematic because of limited NICs/node

Non-uniform DFTs

What if we don't sample with a regular grid?

Broadly classified as 3 types of non-uniform Fourier transform (NUFT):

I Space sampled uniformly, but want non-uniform frequencies

- 2 Space sampled non-uniformly, but want uniform frequencies
- 3 Space sampled non-uniformly, want non-uniform frequencies

Because the Fourier transform and inverse Fourier transform are closely related (via complex conjugates), Types 1 and 2 are closely related.

Non-uniform DFTs

Like ordinary DFTs, the obvious way to do an N-point NUFT scales as N^2 . There are many ways people try to do NUFTs in a fast way – NUFFTs – but they almost all end up being ways to map the non-uniform problem onto a uniform one (or a set of uniform ones), and using a standard FFT:

- Oversampling + interpolation
 - E.g. fit splines to the non-uniform regions and sample onto uniform grid
- Approximate (low-rank) transforms

These are quick to apply but only approximate the NUFT. The accuracy of the method depends on the rank of the approximation, so it is controllable.

http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/ PIRODDI1/NUFT.html https://cims.nyu.edu/cmcl/nufft/nufft.html https://www.math.nyu.edu/faculty/greengar/glee_nufft_sirev.pdf