
Meltdown & Spectre
Edward Higgins

Meltdown & Spectre|2018-01-18|1/1

Brief overview of Meltdown & Spectre

Meltdown & Spectre|2018-01-18|2/1

Meltdown

Exploits side effects of out-of-order
execution to read arbitrary kernel
memory
Affects all modern Intel CPUs in
recent years

Figure: Meltdown
Meltdown & Spectre|2018-01-18|3/1

Spectre

Induces victim to speculatively
perform operations which leak
information
Affects many high-performance
CPUS, including Intel, AMD and
ARM chips in recent years, and others

Meltdown & Spectre|2018-01-18|4/1

Modern CPU Architecture

Meltdown & Spectre|2018-01-18|5/1

Traditional Computers
Next instruction fetched from memory
Instruction is decoded and the location any of indirectly referenced memory is
interpreted
Instruction is executed, and written to wherever is specified
Each instruction takes several clock ticks

 Execute Decode Fetch

Time

Figure: fetch_decode_execute

Instructions take several clock cycles

Meltdown & Spectre|2018-01-18|6/1

Memory Hierarchy

Modern computers use multiple types of memory
Each Various levels present different trade-offs of speed & memory
When the CPU needs memory, it will move it into a lower-level cache
Example:

Memory Size Latency

L1 Cache 64 KB 4-12
L2 Cache 256 KB 26-31
L3 Cache 4 MB 43-60
RAM 8 GB 100s

Meltdown & Spectre|2018-01-18|7/1

Pipelining
F-D-E cycle micro-ops can be done in parallel, each is done by different hardware
Breaking the cycle down into more micro-ops allows more instructions to be
processed at once

Fe D1 D2 Ex WB

Fe D1 D2 Ex WB

Fe D1 D2 Ex WB

Fe D1 D2 Ex WB

Time

I1:

I2:

I3:

I4:

Fe D1 D2 ExI5: WB

CPU

Figure: i486_instruction_pipeline

Meltdown & Spectre|2018-01-18|8/1

Out-of-order execution
Modern CPUs allow micro-ops of many operations to be done out of order

L1
 In

stru
ctio

n
 C

a
ch

e

In
st
ruc

t
ion Que

ue

De
.

De
.

De.
D
e.

Re
na
me/

A
lloc.

Re
-o
rde

r
 Buffer

Scheduler
R
et

ir
em

en
t

Port 0 (AL
U etc.)

Port 1 (AL
U etc.)

Port 2 (Lo
ad adr.

)

Port 3 (St
ore adr

.)

Port 4 (St
ore dat

.)

Port 5 (AL
U etc.)

Memory ControllerBranch Pred. Unit

Figure: Out_of_order_execution
Meltdown & Spectre|2018-01-18|9/1

Speculative execution
Allows commands such as loads & stores to be issued before:

preceding branches resolve
preceding operations complete

Branch prediction

Branches include:
Conditionals
Direct calls & jumps
Indirect calls & jumps
Returns

Calculated by the Branch prediction unit (BPU), including:
Return stack buffer (RSB): A history of recent return addresses
Branch target buffer (BTB): Recent outcomes from conditionals/calls

Meltdown & Spectre|2018-01-18|10/1

Exploiting the architecture

Meltdown & Spectre|2018-01-18|11/1

Transient instructions
Instructions that:

Are executed out of order
Leave measurable side effects

Occur all the time in normal operation
Exploitable if their operation depends on a secret channel

Example

...
if (x < 0)

call OutOfBounds();
var = array[x];
...

Meltdown & Spectre|2018-01-18|12/1

Transient instructions
Instructions that:

Are executed out of order
Leave measurable side effects

Occur all the time in normal operation
Exploitable if their operation depends on a secret channel

Example compiled

...
cmp rax, 0 ; Compare register rax to 0
jl OutOfBounds ; If rax < 0, jump elsewhere
mov rcx, [rbx + rax] ; Now, move some memory into rcx
...

Meltdown & Spectre|2018-01-18|13/1

Side-channel attacks

Usually, multiple programs run on the same hardware
State of the CPU can be changed by these programs
Such changes may be detectable by other programs

Example state changes:

Branch history
BTB
Caches (e.g. Flush+Reload)

Meltdown & Spectre|2018-01-18|14/1

Meltdown attack

Meltdown & Spectre|2018-01-18|15/1

Overview

Allows non-privileged users to read privileged memory

3 Steps to Meltdown

1 The content of a restricted memory location is loaded into a register, throwing an
exception

2 A transient instruction accesses an uncached memory address based on the
contents of that register, fetching it into cache

3 A side-channel attack (e.g. Flush+Reload) used to determine which memory has
been moved to cache, revealing the value of the restricted memory

Meltdown & Spectre|2018-01-18|16/1

Steps 1 & 2: Transmission of the secret

Line 5 attempts to retrieve the secret
byte from address rcx into rl

CPU checks permission bits of
address, and raises an exception
While that is happening line 8
speculatively fetches some offset
from the probe array, caching it
Once line 5 retires, the exception
resolves and the CPU registers and
pipeline are flushed

1 ; rcx = secret address
2 ; rbx = probe array
3
4 retry:
5 mov a1, byte [rcx]
6 shl rax, 0xc
7 jz retry
8 mov rbx, qword [rbx + rax]

Meltdown & Spectre|2018-01-18|17/1

Step 3: Receiving the secret

Figure: Cache timing

Using a Flush+Reload attack, access time to the probe_array can be measured
By timing access to each entry in the probe array, the entry corresponding to the
value of the secret byte becomes apparent, (in this case it was 84)

Meltdown & Spectre|2018-01-18|18/1

But which addresses?

User processes don’t know physical addresses, they use a virtualised address space
User processes may need to access the kernel, so kernel memory is mapped within
this space
Since the kernel manages everything, the entire physical memory is mapped within
the kernel address space

Meltdown & Spectre|2018-01-18|19/1

Address Space Layout Randomization

In the past, the address of physical memory was easy to figure out for a given kernel
Within the past 15 years, ASLR has been implemented in all main OSs to
randomize these addresses
Randomization is limited to 40 bits, so on a machine with 8GB of memory, only
128 tests are needed to find the actual physical memory
Once found, the attacker can proceed to dump the entire physical memory

Meltdown & Spectre|2018-01-18|20/1

Performance

Since steps 1 and 2 are much faster than step 3, performance can be improved by
only reading 1 bit at a time:
In this case, only one read of the probe array is needed:

if it’s cached it’s a 1
else it’s a 0

Using this technique, an attacker can read any portion of physical memory at
>500KB/s, with an error rate of <0.04%

Meltdown & Spectre|2018-01-18|21/1

Meltdown Fixes

The fix for meltdown involves remapping the virtual address space every time a
program makes a system call to the kernel
This means that the kernel memory won’t be in unprivileged processes’ address
spaces, but will slow down certain operations
This has been patched in all major OSs (“Kernel Page Table Isolation” or KPTI for
linux)
Make sure your computers are up-to-date to minimize the risks

Meltdown & Spectre|2018-01-18|22/1

Spectre attacks

Meltdown & Spectre|2018-01-18|23/1

Overview

Allows attacker to trick a victim process into revealing secret memory from their
address space
Involves training the victim code to speculatively execute code it otherwise wouldn’t
2 approaches involving :

1 Training the outcome of a conditional branch in the victim
2 Training the call address of a victim’s call

Meltdown & Spectre|2018-01-18|24/1

Exploiting conditional branch misprediction

Consider some victim code:
1 if (x < array1_size)
2 y = array2[array1[x] * 256];

Calling this code (e.g. through an API) with allowed x multiple times trains the
CPU to speculatively execute line 2.
Now, calling with some malicious x, line 2 can cache memory based on the target
value, as previously mentioned

Meltdown & Spectre|2018-01-18|25/1

Exploiting conditional branch misprediction (contd.)

Selecting appropriate values for x allows an attacker to read arbitrary memory from
the victim’s address space
For example:

Accessing secrets from a cryptographic library
Accessing arbitrary browser data from a sandboxed JS environment

Meltdown & Spectre|2018-01-18|26/1

Poisoning indirect branches

In some cases, a victim will make a branch call while the attacker has control over
some CPU registers
E.g. A function making a function call while dealing with externally provided data
The attacker can train the BTB to branch to some gadget code instead of the
correct destination
This way, data from addresses calculated from those registers can be leaked

Meltdown & Spectre|2018-01-18|27/1

Spectre fixes

Much harder to fix than Meltdown, KPTI and similar fixes won’t work
Fixes can include allowing indirect branches to be isolated from speculative
execution
Likely to be an issue for a while

Meltdown & Spectre|2018-01-18|28/1

Summary

Performance optimisations in modern CPUs have left them vunerable to attacks
Meltdown and Spectre attacks demonstrate some ways in this can be done
Now we know, we can try to mitigate the risks
However, this will likely be an issue for a while

Meltdown & Spectre|2018-01-18|29/1

Many thanks!

Meltdown & Spectre|2018-01-18|30/1

Useful Resources

1 Google project zero post
2 Meltdown paper
3 Spectre paper
4 Intel x86 optimization manual
5 Google post on spectre fix

Meltdown & Spectre|2018-01-18|31/1

https://googleprojectzero.blogspot.co.uk/2018/01/reading-privileged-memory-with-side.html
https://meltdownattack.com/meltdown.pdf
https://meltdownattack.com/spectre.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf
https://support.google.com/faqs/answer/7625886

Appendix

Meltdown & Spectre|2018-01-18|32/1

Intel Haswell Microarchitecture

Figure: Haswell microarchitecture

Meltdown & Spectre|2018-01-18|33/1

AMD Zen Microarchitecture

Figure: AMD Zen microarchitecture

Meltdown & Spectre|2018-01-18|34/1

ARM Coretex A9 Microarchitecture

Figure: ARM Coretex A9 microarchitecture

Meltdown & Spectre|2018-01-18|35/1

