Mixed Python/C programming with
Cython

Ben Dudson, 22nd September 2017

Mixed Python/C programming with Cython|September 2017|1/1

Cython

http://cython.org/

Compiles Python code to native machine code

Extends Python by adding type information, enabling optimisations

Makes calling C or C++ code relatively straightforward

Included with many python distributions (Anaconda, Enthought, Pythonxy, Sage)
Already installed on most University of York Linux machines

Can install using pip:

pip install --user Cython

Mixed Python/C programming with Cython|September 2017|2/1

http://cython.org/

Application

This code calls a C function defined in “idamclient.h” which takes a character string
input, and returns an integer.

cdef extern :
bint getIdamProperty(const char *)

getProperty ()
"Get a property for client/server behavior"
getIdamProperty ()

cdef to define the external function, specifying input and output types
def to define a Python function which handles type conversion as needed and can
be called from other python code

(see post http://www-users.york.ac.uk/~bd512/2013/10/24/cython/ and code
https://github.com/bendudson/pyidam2)

Mixed Python/C programming with Cython|September 2017|3/1

http://www-users.york.ac.uk/~bd512/2013/10/24/cython/
https://github.com/bendudson/pyidam2

First example: C code

This example calls a C function which is defined in scalars.c
timesTwo (in) {
.kin;
}

and a header file scalars.h

timesTwo (in);

Mixed Python/C programming with Cython|September 2017|4/1

First example: Building C code

We need a library file: .a or .so on Linux

gcc —-c scalars.c -o scalars.o
ar cr libscalars.a scalars.o

or in a makefile:

ar Cr

gcc -c -0

Note: name of library file should start with “lib”

Mixed Python/C programming with Cython|September 2017|5/1

First example: Cython code

Here called cscalars.pyx

If in the same directory as the C code, don't give it the same name. Cython will
generate cscalars.c from scalars.pyx so could overwrite your files

Conventional to have a Python module starting with c or _c as a direct wrapper
around the C functions, then a more “pythonic” interface as a separate module.

mmnn

Module of things

nimnn

cdef extern g
double timesTwo(double value) # C function which only Cython will see

times_two(value) : # This is the function which Python will see

"Multiplies wvalue by 2"

timesTwo (value)
Mixed Python/C programming with Cython|September 2017|6/1

First example: Building Cython code

To build a Cython module you need a setup.py

distutils.core setup
distutils.extension Extension
Cython.Distutils build_ext
setup (
name = , # Not the mame of the module
cmdclass = { :build_ext}, # magic
ext_modules = [Extension(. # The name of the module
[1,
libraries=[1) 1 # <lib>scalars<.a>

Mixed Python/C programming with Cython|September 2017|7/1

First example: Building Cython code

Then to build the module in the current directory
CFLAGS="-I." LDFLAGS="-L." python setup.py build_ext -i

The CFLAGS and LDFLAGS variables specify where the “h™ and “.a" files are. May not be
needed in this case (depending on paths), but doesn't hurt.

Or in a makefile. ..

CFLAGS= LDFLAGS= python setup.py build_ext -i

Mixed Python/C programming with Cython|September 2017|8/1

First example: Using Cython code

Building this creates a “.so” file, mymodule.cpython-36m-x86_64-1linux-gnu.so on
my system. To use it:

mymodule
(mymodule)
mymodule.times_two(3.2)

Output:

NAME
mymodule - Module of things

FUNCTIONS
times_two(...)

Multiplies value by 2

Out: 6.4

Mixed Python/C programming with Cython|September 2017|9/1

Second example: Arrays

A more useful example is where we are operating on arrays of numbers

Python manages its own memory: Don't mix C malloc/free or C4++ new/delete
with Python arrays, or pass arrays created in C to Python.

The easiest way is to let Python handle creating arrays, and pass them to C
If you don't know the size of the array needed for return data:

Create a separate function to first get the size
Allocate the data in Python
Then call C again to fill in the array values

Note that multidimensional NumPy arrays are really 1D arrays of data in memory,
so a 2D NumPy array is passed to C as double* not double**

Mixed Python/C programming with Cython|September 2017|10/1

Second example: C code

timesTwo (length, * in, * out) {
i;
(i = 0; i < length; i++) {
out[i] = 2.*in[i];
+

Mixed Python/C programming with Cython|September 2017|11/1

Second example: Cython code

numpy np # For the Python interface
cimport numpy np # For the C interface

cdef extern :
bint timesTwo(bint, double* inputarray, double* outputarray)

times_two(value):
"Multiplies wvalue by 2"
size = (value)
inputvalues = value.astype(np.float64) # double precision
outputvalues = np.empty(size, dtype=np.float64) # Create array
status = timesTwo(size,
<double*> np.PyArray_DATA(inputvalues),
<double*> np.PyArray_DATA (outputvalues))
status ==

outputvalues
Mixed Python/C programming with Cython|September 2017|12/1

Second example: Running

mymodule
numpy np

a = np.ones(5)

mymodule.times_two(a)

Out: array([2., 2., 2., 2.1)

Mixed Python/C programming with Cython|September 2017|13/1

Things to try

Download the examples

Extend the scalars code to pass in two scalars rather than one

Extend the arrays code to do a matrix-vector multiply

Try calling a library (e.g. FFTW, GSL), adding the library to link to setup.py

Mixed Python/C programming with Cython|September 2017|14/1

