¢ 12 UNIVERSITY
\

Practical Software Design & Style

Practical Software Design & Style|15 Sep 2017(1/2

Practical Software Design & Style

‘Computational science has to develop the same professional integrity as
theoretical and experimental science’, Douglas Post, LANL

Software Design - what and who?

m Requirements: what (not how)

m Users: You, others in the Group, others in the field. ..

m Longevity: quick project? Your PhD? The next major code for. ..
Remember RCUK requirements!

Practical Software Design & Style|15 Sep 2017(2/2

Design

Start with a blank piece of paper, not a blank file

Philosophy

m Decide what your program will do
m Design it to be tested
m Design the data flow
m Write the broad structure
m High-level (physics)
m Medium-level (data)
m Low-level (infrastructure)

m What exists already?

Practical Software Design & Style|15 Sep 2017(3/2

Lessons from Unix (from Eric Steven Raymond)

Core design principles

Modularity: simple parts connected by clean interfaces.

Clarity: Clarity is better than cleverness.

Simplicity: Design for simplicity; add complexity only where you must.
Transparency: Design to be comprehensible (helps reading & debugging).
Robustness: Robustness is the child of transparency and simplicity.

Least Surprise: Code should always do the least surprising thing.

Silence: When a program has nothing surprising to say, it should say nothing.
Repair: When you must fail, fail noisily and as soon as possible.
Extensibility: Design for the future; it's sooner than you think!
Representation: Fold knowledge into data so program logic can be stupid and
robust.

Practical Software Design & Style|15 Sep 2017|4/25

Design considerations

Economy: Your time is expensive, conserve it (in preference to machine time).
Generation: Avoid hand-coding; write programs to write programs when you
can.

Optimisation: Prototype before polishing - get it working first!

Diversity: Distrust all claims for “one true way".

Composition: Design programs to be connected to other programs.
Separation: Separate policy from mechanism; separate interfaces from
engines.

Practical Software Design & Style|15 Sep 2017(5/2

Algorithms
‘When in doubt, use brute force’, Ken Thompson (Unix creator)

Me vs the world

m does my program do something new?
m if a good implementation exists, use it
Portable? Robust? Fast?

Fancy vs plain

Fancy algorithms are tempting, but:

m Often only better for large problems
m Complex to code

m Fewer reference implementations

m Prone to bugs

Personal philosophy

Showing off
Don’t! Code to be readable. Think about ‘reading age’ - beware:

New language features

Golfing (be expressive)

Overloading operators

Confusing syntax

E.g. Fortran arrays vs functions

Object orientation is a double-edged sword

m encourages good encapsulation

m can simplify code & coding greatly

m is inherently complex

m hides operations

m may have hidden performance & storage costs

Practical Software Design & Style|15 Sep 2017|7 /25

Don't be a ‘Real programmer’

Real programmers?

m Real Programmers don’t write specifications
Users should consider themselves lucky to get any programs at all, and take
what they get.

m Real Programmers don’t comment their code
If it was hard to write, it should be hard to read.

m Real Programmers don’t do documentation
Documentation is for numpties who can’t figure it out from the source code.

m Real Programs never work right the first time
Just throw them on the machine; they can be patched into working in “just a
few" all-night debugging sessions.

Practical Software Design & Style|15 Sep 2017|8/25

Language
New vs Old

m Small and quick: write what you know.

m Longer: think about best language.
Speed of writing, speed of running, number of bugs, complexity,
maintainability. . .

m ASCI Complexity metric,

FP:<

C++ N g N F77)
53 128 107

Duration = 1.6 * F'P%5
. FP
Team required =5
Bugs as F'P1%
Documentation as F P15

Practical Software Design & Style|15 Sep 2017|9/25

Naming is important

‘[God] brought [the animals] to the man to see what he would name them; and
whatever the man called each living creature, that was its name.” (Genesis 2:19b)

Consistency

m There are lots of different conventions to naming things

m Pick something and stick to it (i.e. be consistent)
If you use a particular synonym or abbreviation (e.g. “calc” for “calculate”)
then stick to it. Try to avoid mixtures like:

m calc_density
m velocity_ calculate
m flux_computation

m Generally: nouns for variables, verbs for functions.

Practical Software Design & Style|15 Sep 2017|10/25

Variables

m Think about what you need to know about a variable; perhaps:

m What is it physically (e.g. particle density)?
m What is it computationally (e.g. array of reals, derived-type, Object...)?
m Where is it defined?

m Often end up with names comprised of several words, e.g. “particle density".

= snake case: particle_density (Perl and Python; C and C++ standard
libraries)

m camel case: particleDensity (lower, camelCase; Microsoft) or ParticleDensity
(upper, CamelCase; Pascal case)

m train case: particle-density (not supported by many languages; Lisp case)

m Sometimes use different naming style for different things, e.g. functions use
one style and variables use another.

m Avoid cryptic abbreviations (e.g. cptwfp).

Practical Software Design & Style|15 Sep 2017|11/25

Data

Separation

m Keep code and data separate

m Read from input, don't hard-code

Access control

m Think: who ‘owns’ this data?

m Try not to change data you don't ‘own’

m Consider restricting access (private data)

Practical Software Design & Style|15 Sep 2017|12/2

Encapsulation

m Keep related data together (derived types, Objects)

type, public :: wavefunction
complex(kind=dp), dimension(:,:,:,:), allocatable :: coeffs

integer :: nbands

integer :: nkpts

integer :: nspins
end type wavefunction

Practical Software Design & Style|15 Sep 2017|13/2

Functions and subroutines

Operation

m Clear purpose

m No side-effects
(Or minimise and document)

m Error checking and propagation
Check for errors in inputs, optionally return error status.

m Single entry and exit points
(Except for trivial checks with early exit?)

m Clear API
. and consistent

m Document it

Practical Software Design & Style|15 Sep 201714 /25

Lessons from projects

Accelerated strategic computing initiative (ASCI)

m Create predictive simulation codes for nuclear weapons research.
= ~ $6B from 1996-2004.
m Successful projects emphasised:

m Building on successful code development history and prototypes

User focus

Better physics/mathematics more important than better “computer science”
Modern but proven Computer Science techniques,

They don't make the code project a Computer Science research project
Software Quality Engineering: Best Practices rather than Processes
Validation and Verification

m Unsuccessful projects. .. didn't.

Practical Software Design & Style|15 Sep 2017|15/25

Lessons from projects

‘Employ modern computer science techniques, but don’'t do computer science
research’ Douglas Post, LANL

Accelerated strategic computing initiative (ASCI)

= Main value of the project is improved science (e.g. physics and maths)

m LANL spent over 50% of its code development resources on a project that
had a major computer science research component. It was a massive failure

(~$100M).

m “Best practices” better than “Good processes”

Practical Software Design & Style|15 Sep 2017|16/2

CASTEP Design History

Aim: Quantum mechanical simulation of materials

Ancient history

m Written in F77 in 1980s by Mike Payne; added to by PhDs & postdocs

m F90 fork by Matt Probert
m Metals simulation fork by Nicola Marzari

m Parallelised by Lyndon Clarke

m CETEP (F77 + MPI)
m F90 fork by Matt Segall
m Metals F90 fork by Phil Hasnip

m 20 kLOC F77
m Very difficult to maintain
m Separate commercial codebase (100 kLOC F77 + F90 + C + MPI)

CASTEP Design History

Not-so-ancient history

m End of 1990s:

m difficult to maintain
m ‘impossible’ to add new features

m 1999 form CASTEP Developers Group (6 people)
m Write a Design Specification
m F90 + MPI

m Metals and insulators

m 2000 start coding low-level modules
m 2001 commercial release

Practical Software Design & Style|15 Sep 2017|18/25

CASTEP Design History
Then

m About 250 kLOCs
m ASCI metrics (actual):

m FP = 2800
m Team size 16 (6)
m Duration 77 PYs (12)

m F2003 (with some F2008)

m Single codebase (serial/parallel, academic/commercial)
= 600 kLOC

m Actively maintained and developed

Practical Software Design & Style|15 Sep 2017(|19/25

CASTEP Design
Style

m Derived-types and encapsulation, but not Objects
m Allocatable arrays, not pointers
(Performance and readability)
m No hand-optimisations
If the compiler should do it, let it (and file bug reports when it doesn't!)

m Modules defined in file of same name

m Main derived data types defined in modules

m Operations on main derived data types in modules
m Functions & subroutines start with module name

CASTEP Design
Code blocks

m Functions
For short, well-defined operations that could in principle be in-lined

m Subroutines
Single entry point, single main exit point though early exit allowed if

arguments mean no work is required (e.g. data length of zero).

m Argument lists always ordered: “inputs, outputs, optional”
m Standard header to say:

What it does

What the arguments are
Key modules it uses

Any known shortcomings
Who wrote it and when

CASTEP Design Failings

Naming inconsistencies

m Different orderings:

m calculate_stress
m popn_calculate

m Different abbreviations:

m calc_molecular_dipole
m phonon_calculate_dos

Practical Software Design & Style|15 Sep 2017|22/2

CASTEP Design Failings

Missing low-level types and methods

m Defined physical objects, e.g. potentials and densities
m Implemented as arrays, e.g. complex values on grid

m No low-level ‘grid’ types

m Duplicate operations for potential and density grids
m New ‘grid" things need a completely new type and code, or misuse potential or

density

Practical Software Design & Style|15 Sep 2017|23/2

CASTEP Design Failings

Encapsulation

m Some data is strongly related to more than one physical object

Where should it live?

m E.g. eigenvector equation HV, = E,V,

m Is E} a property of H, W or a separate object?
m What about something which depends upon Ej?

Practical Software Design & Style|15 Sep 2017|24 /2

Summary

m Think before coding!

m What, why, who for, and then how
m How much is new?
m How will you know it's working?

m Stick to your design
m Be consistent
m What about surprising input?

References

http://www.catb.org/~esr/writings/taoup/html/ch01s06.html
http://www.csm.ornl.gov/meetings/SCNEworkshop/Post-IV.pdf

http://www.castep.org

Practical Software Design & Style|15 Sep 2017(|25/25

http://www.catb.org/~esr/writings/taoup/html/ch01s06.html
http://www.csm.ornl.gov/meetings/SCNEworkshop/Post-IV.pdf
http://www.castep.org

