
Practical Software Design & Style

Practical Software Design & Style|15 Sep 2017|1/25

Practical Software Design & Style

‘Computational science has to develop the same professional integrity as
theoretical and experimental science’, Douglas Post, LANL

Software Design - what and who?

Requirements: what (not how)
Users: You, others in the Group, others in the field. . .
Longevity: quick project? Your PhD? The next major code for. . .
Remember RCUK requirements!

Practical Software Design & Style|15 Sep 2017|2/25

Design
Start with a blank piece of paper, not a blank file

Philosophy

Decide what your program will do
Design it to be tested
Design the data flow
Write the broad structure

High-level (physics)
Medium-level (data)
Low-level (infrastructure)

What exists already?

Practical Software Design & Style|15 Sep 2017|3/25

Lessons from Unix (from Eric Steven Raymond)
Core design principles

Modularity: simple parts connected by clean interfaces.
Clarity: Clarity is better than cleverness.
Simplicity: Design for simplicity; add complexity only where you must.
Transparency: Design to be comprehensible (helps reading & debugging).
Robustness: Robustness is the child of transparency and simplicity.
Least Surprise: Code should always do the least surprising thing.
Silence: When a program has nothing surprising to say, it should say nothing.
Repair: When you must fail, fail noisily and as soon as possible.
Extensibility: Design for the future; it’s sooner than you think!
Representation: Fold knowledge into data so program logic can be stupid and
robust.

Practical Software Design & Style|15 Sep 2017|4/25

Design considerations

Economy: Your time is expensive, conserve it (in preference to machine time).
Generation: Avoid hand-coding; write programs to write programs when you
can.
Optimisation: Prototype before polishing - get it working first!
Diversity: Distrust all claims for “one true way”.
Composition: Design programs to be connected to other programs.
Separation: Separate policy from mechanism; separate interfaces from
engines.

Practical Software Design & Style|15 Sep 2017|5/25

Algorithms
‘When in doubt, use brute force’, Ken Thompson (Unix creator)

Me vs the world
does my program do something new?
if a good implementation exists, use it
Portable? Robust? Fast?

Fancy vs plain
Fancy algorithms are tempting, but:

Often only better for large problems
Complex to code
Fewer reference implementations
Prone to bugs

Practical Software Design & Style|15 Sep 2017|6/25

Personal philosophy
Showing off
Don’t! Code to be readable. Think about ‘reading age’ - beware:

New language features
Golfing (be expressive)
Overloading operators
Confusing syntax
E.g. Fortran arrays vs functions
Object orientation is a double-edged sword

encourages good encapsulation
can simplify code & coding greatly
is inherently complex
hides operations
may have hidden performance & storage costs

Practical Software Design & Style|15 Sep 2017|7/25

Don’t be a ‘Real programmer’
Real programmers?

Real Programmers don’t write specifications
Users should consider themselves lucky to get any programs at all, and take
what they get.
Real Programmers don’t comment their code
If it was hard to write, it should be hard to read.
Real Programmers don’t do documentation
Documentation is for numpties who can’t figure it out from the source code.
Real Programs never work right the first time
Just throw them on the machine; they can be patched into working in “just a
few” all-night debugging sessions.

Practical Software Design & Style|15 Sep 2017|8/25

Language
New vs Old

Small and quick: write what you know.
Longer: think about best language.
Speed of writing, speed of running, number of bugs, complexity,
maintainability. . .
ASCI Complexity metric,

FP =
(

C++
53 + C

128 + F77
107

)
Duration = 1.6 ∗ FP 0.5

Team required F P
150

Bugs as FP 1.25

Documentation as FP 1.15
Practical Software Design & Style|15 Sep 2017|9/25

Naming is important
‘[God] brought [the animals] to the man to see what he would name them; and
whatever the man called each living creature, that was its name.’ (Genesis 2:19b)

Consistency

There are lots of different conventions to naming things
Pick something and stick to it (i.e. be consistent)
If you use a particular synonym or abbreviation (e.g. “calc” for “calculate”)
then stick to it. Try to avoid mixtures like:

calc_density
velocity_calculate
flux_computation

Generally: nouns for variables, verbs for functions.

Practical Software Design & Style|15 Sep 2017|10/25

Variables
Think about what you need to know about a variable; perhaps:

What is it physically (e.g. particle density)?
What is it computationally (e.g. array of reals, derived-type, Object. . .)?
Where is it defined?

Often end up with names comprised of several words, e.g. “particle density”.
snake case: particle_density (Perl and Python; C and C++ standard
libraries)
camel case: particleDensity (lower, camelCase; Microsoft) or ParticleDensity
(upper, CamelCase; Pascal case)
train case: particle-density (not supported by many languages; Lisp case)

Sometimes use different naming style for different things, e.g. functions use
one style and variables use another.
Avoid cryptic abbreviations (e.g. cptwfp).

Practical Software Design & Style|15 Sep 2017|11/25

Data

Separation

Keep code and data separate
Read from input, don’t hard-code

Access control
Think: who ‘owns’ this data?
Try not to change data you don’t ‘own’
Consider restricting access (private data)

Practical Software Design & Style|15 Sep 2017|12/25

Encapsulation

Keep related data together (derived types, Objects)
type, public :: wavefunction

complex(kind=dp), dimension(:,:,:,:), allocatable :: coeffs
integer :: nbands
integer :: nkpts
integer :: nspins

end type wavefunction

Practical Software Design & Style|15 Sep 2017|13/25

Functions and subroutines
Operation

Clear purpose
No side-effects
(Or minimise and document)
Error checking and propagation
Check for errors in inputs, optionally return error status.
Single entry and exit points
(Except for trivial checks with early exit?)
Clear API
. . . and consistent
Document it

Practical Software Design & Style|15 Sep 2017|14/25

Lessons from projects
Accelerated strategic computing initiative (ASCI)

Create predictive simulation codes for nuclear weapons research.
~ $6B from 1996-2004.
Successful projects emphasised:

Building on successful code development history and prototypes
User focus
Better physics/mathematics more important than better “computer science”
Modern but proven Computer Science techniques,
They don’t make the code project a Computer Science research project
Software Quality Engineering: Best Practices rather than Processes
Validation and Verification

Unsuccessful projects. . . didn’t.
Practical Software Design & Style|15 Sep 2017|15/25

Lessons from projects

‘Employ modern computer science techniques, but don’t do computer science
research’ Douglas Post, LANL

Accelerated strategic computing initiative (ASCI)

Main value of the project is improved science (e.g. physics and maths)
LANL spent over 50% of its code development resources on a project that
had a major computer science research component. It was a massive failure
(~$100M).
“Best practices” better than “Good processes”

Practical Software Design & Style|15 Sep 2017|16/25

CASTEP Design History
Aim: Quantum mechanical simulation of materials
Ancient history

Written in F77 in 1980s by Mike Payne; added to by PhDs & postdocs
F90 fork by Matt Probert
Metals simulation fork by Nicola Marzari

Parallelised by Lyndon Clarke
CETEP (F77 + MPI)
F90 fork by Matt Segall
Metals F90 fork by Phil Hasnip

20 kLOC F77
Very difficult to maintain
Separate commercial codebase (100 kLOC F77 + F90 + C + MPI)

Practical Software Design & Style|15 Sep 2017|17/25

CASTEP Design History
Not-so-ancient history

End of 1990s:
difficult to maintain
‘impossible’ to add new features

1999 form CASTEP Developers Group (6 people)
Write a Design Specification

F90 + MPI
Metals and insulators

2000 start coding low-level modules
2001 commercial release

Practical Software Design & Style|15 Sep 2017|18/25

CASTEP Design History
Then

About 250 kLOCs
ASCI metrics (actual):

FP = 2800
Team size 16 (6)
Duration 77 PYs (12)

Now
F2003 (with some F2008)
Single codebase (serial/parallel, academic/commercial)
600 kLOC
Actively maintained and developed

Practical Software Design & Style|15 Sep 2017|19/25

CASTEP Design
Style

Derived-types and encapsulation, but not Objects
Allocatable arrays, not pointers
(Performance and readability)
No hand-optimisations
If the compiler should do it, let it (and file bug reports when it doesn’t!)

Naming

Modules defined in file of same name
Main derived data types defined in modules
Operations on main derived data types in modules
Functions & subroutines start with module name

Practical Software Design & Style|15 Sep 2017|20/25

CASTEP Design
Code blocks

Functions
For short, well-defined operations that could in principle be in-lined
Subroutines
Single entry point, single main exit point though early exit allowed if
arguments mean no work is required (e.g. data length of zero).
Argument lists always ordered: “inputs, outputs, optional”
Standard header to say:

What it does
What the arguments are
Key modules it uses
Any known shortcomings
Who wrote it and when

Practical Software Design & Style|15 Sep 2017|21/25

CASTEP Design Failings

Naming inconsistencies

Different orderings:
calculate_stress
popn_calculate

Different abbreviations:
calc_molecular_dipole
phonon_calculate_dos

Practical Software Design & Style|15 Sep 2017|22/25

CASTEP Design Failings

Missing low-level types and methods

Defined physical objects, e.g. potentials and densities
Implemented as arrays, e.g. complex values on grid

No low-level ‘grid’ types
Duplicate operations for potential and density grids
New ‘grid’ things need a completely new type and code, or misuse potential or
density

Practical Software Design & Style|15 Sep 2017|23/25

CASTEP Design Failings

Encapsulation

Some data is strongly related to more than one physical object
Where should it live?

E.g. eigenvector equation HΨb = EbΨb

Is Eb a property of H, Ψ or a separate object?
What about something which depends upon Eb?

Practical Software Design & Style|15 Sep 2017|24/25

Summary

Think before coding!
What, why, who for, and then how
How much is new?
How will you know it’s working?

Stick to your design
Be consistent
What about surprising input?

References
http://www.catb.org/~esr/writings/taoup/html/ch01s06.html
http://www.csm.ornl.gov/meetings/SCNEworkshop/Post-IV.pdf
http://www.castep.org

Practical Software Design & Style|15 Sep 2017|25/25

http://www.catb.org/~esr/writings/taoup/html/ch01s06.html
http://www.csm.ornl.gov/meetings/SCNEworkshop/Post-IV.pdf
http://www.castep.org

