
Data Management
Ben Dudson

Data Management|4th August 2017|1/18

Data Management

Could you find a document you wrote in 2007?
Could you explain how you got the figures or results in
that document, and repeat it if needed?

Most of us are buried in data rather than managing it, but:

Spending a little time thinking about how (and what)
you store now can save a lot of time later
You don’t have to make big changes at once: small
things can make a big difference

https://xkcd.com/1360/

Data Management|4th August 2017|2/18

Reproducing old results

Example scenarios:

Finishing PhD thesis: You need to modify a graph for your thesis, adding a few
data points and reformatting it to look nice. Unfortunately you made the graph you
have in your first year. Can you find or reproduce your analysis?
A new collaborator contacts you, and would like to build on work you published 5
years ago. Can they get the inputs and code to use as a starting point?

Both of these have happened to me, and are not uncommon. . .

Data Management|4th August 2017|3/18

Funding rules
In addition to being useful for your future self, keeping records is now a funding
requirement. https://www.epsrc.ac.uk/about/standards/researchdata/

Principles

EPSRC-funded research data . . . should be made freely and openly available with
as few restrictions as possible in a timely and responsible manner
EPSRC recognises that there are . . . constraints on release of research data.
Sharing research data is an important contributor to the impact of . . . research.
EPSRC-funded researchers should be entitled to a limited period of privileged
access to the data they collect to allow them to work on and publish their results.
Institutional and project specific data management policies and plans . . . should
exist for all data. Data with acknowledged long term value should be preserved and
remain accessible and useable for future research.
Published results should always include information on how to access the
supporting data.

Data Management|4th August 2017|4/18

https://www.epsrc.ac.uk/about/standards/researchdata/

Funding rules

In addition to being useful for your future self, keeping records is now a funding
requirement. https://www.epsrc.ac.uk/about/standards/researchdata/

Expectations

Organisations will promote awareness of these principles and expectations. . .
Papers should include a statement describing how supporting data may be accessed
Metadata describing the research data is made freely accessible on the internet

What research data exists, why, when and how it was generated, and how to access it.
It is expected that the metadata will include a robust digital object identifier (DOI).

Ensure that research data is securely preserved for a minimum of 10 years

Data Management|4th August 2017|5/18

https://www.epsrc.ac.uk/about/standards/researchdata/

What to do? The short version

1 Run simulations with an identifiable version of the code
2 Document and keep all inputs used to produce published results
3 Document all post-processing steps from simulation output to graph
4 Put this information somewhere safe, and record its existence

Note: Something is better than nothing!

Data Management|4th August 2017|6/18

1) Preserve your code

Code should be version controlled (git, svn, hg,. . .)
Make sure you run simulations with a checked-in version
Record the version used with the data

If possible make this automatic: The make process can record the version This can be
stored in the code, then printed/saved to output
Otherwise put it in a README file

Store the code somewhere safe (10 years safe)

Data Management|4th August 2017|7/18

Example (C/C++) : makefile

VERSION := $(shell git rev-parse HEAD) # Get git commit

SOURCEC = mycode.cxx
TARGET = mycode

OBJ = $(SOURCEC:%.cxx=%.o)

$(TARGET): $(OBJ) makefile
g++ -o $(TARGET) $(OBJ)

%.o: %.cxx makefile
g++ -Wall -c $< -o $@ -DVERSION="$(VERSION)" # Pass to preprocessor

Data Management|4th August 2017|8/18

Example (C/C++) : mycode.cxx
#include <iostream>

#define VER1_(x) #x
#define VER_(x) VER1_(x)
#define VER VER_(VERSION)

int main() {
std::cout << "Code version: " << VER << std::endl;

return 0;
}

When run, this produces:

Code version: cdf9b8d6df85d669afe26aeab6b538a3b0f64c54
Data Management|4th August 2017|9/18

1b) Preserve your code’s environment

Your code probably depends on other people’s code: libraries, compilers, operating
systems, . . .

Record somewhere the versions of the libraries used. This could be with the code in
a README: “This code is known to work with MagicLibary 1.2 and AwesomeThing
0.8”
Software containers bundle code and dependencies together

Docker https://www.docker.com is probably the most widely used

Data Management|4th August 2017|10/18

https://www.docker.com

2) Keep track of code runs

When exploring parameters, changing code, fixing bugs, it can be hard to keep track of
runs, and most of them will probably not be useful

It’s hard to know what might be useful later
Having a system helps organise results, simplifies analysis, and is easier to remember
Everyone has a system, but it’s good to think about what it is occasionally

Data Management|4th August 2017|11/18

2) Keep track of code runs
Simple parameter scans

When only a few parameters are changing, and the code is mostly fixed, nested
directories can work:

ex/ ex-C-1.0/
area-1.0/ area-2.0/

nloss-0.0/ nloss-0.0/
nloss-1e3/ 0.25/

0.3/ 0.3/
0.4/ norad/

area-2.0/ area-1.0/

Note Remember to document what the parameters are!

Data Management|4th August 2017|12/18

2) Keep track of code runs
Exploratory testing

When code is changing and inputs are changing, nested directories or long directory
names become unmanageable.

run-01 run-02 run-03 run-04 run-05
README

In the README file explain what each run is:

run-01 : Starting with standard test case foo
run-02 : Changing parameter bar from 1 to 2

-> Field values seem unphysical near boundary
run-03 : Fixed bug in someBoundaryFunction, retrying run-02
...

Data Management|4th August 2017|13/18

3) Document post-processing steps
Important: Automate as much of the post-processing as you can

Repeating the analysis is a matter of re-running the script
Makes changing, extending or fixing the analysis much easier

data = [("no carbon", "ex/area-2.0/nloss-0.0", 'o')
,("1% carbon", "ex-C-1.0/area-2.0/nloss-0.0", 'x')]

for label, path, symbol in data:
Read data from path
Analyse it
plt.plot(result, symbol, label=label)

plt.legend()
plt.savefig("figure1-carbon-comparison.pdf")

Data Management|4th August 2017|14/18

3) Break up complicated processing steps

It often makes sense to break up
analysis into steps

Translate different data sources to
a common format, then apply the
same analysis code to all of them
Separate slow analysis from
plotting
Keep the scripts and essential
inputs (marked red)
Keep as much of the rest as you
can, starting from the end and
working back

Experiment Simulation A Simulation B

Common format

Translate E Translate A Translate B

Slow analysis step

Code A Inputs Code B Inputs

Results

Plotting 1 Plotting 2 Plotting 3

Figure 1 Figure 2 Figure 3

Data Management|4th August 2017|15/18

4) Safely store code inputs and data
The University shared filestore https://www.york.ac.uk/it-services/filestore/

Long term, backed up storage
Around 1Tb available to groups without charges

The Archer Research Data Facility
Long term backed up storage
Not publicly accessible

Code repositories
Github https://github.com/ : Private repositories with Team plan, free academic use
Bitbucket https://bitbucket.org : Unlimited private repositories for academic use
CCPforge https://ccpforge.cse.rl.ac.uk/gf/

Zenodo https://zenodo.org/
Free hosting of data or software, up to 50Gb per submission
Automatically assigned a DOI to include in publications
Can be open, closed, or embargoed
No transfer of ownership, flexible license

Data Management|4th August 2017|16/18

https://www.york.ac.uk/it-services/filestore/
https://github.com/
https://bitbucket.org
https://ccpforge.cse.rl.ac.uk/gf/
https://zenodo.org/

4b) Tell people about it
The University’s PURE system can link papers to datasets (DOIs)
Include a statement in your papers:

e.g. (Dudson, Leddy 2017)

All source code and input files used in this paper are available at
https://github.com/boutproject/hermes (commit 91a783fa), along with
BOUT++ version 3.1 available from
https://github.com/boutproject/BOUT-dev configured with PETSc 3.5.4

e.g. (Nedelkoski et al 2017)

All data created during this research are available by request from the
University of York Data Catalogue
https://dx.doi.org/10.15124/249cbf0c-8e88-426b-b3ba-53d490e027ed.

Data Management|4th August 2017|17/18

Conclusions

Good data management saves you time and headaches in the long run
Build on previous work rather than repeating it
Some tools available which can help: Jupyter notebooks, ELOG, Docker, . . .
Think about how you manage your data, and ways to automate and record it
For full EPSRC bonus points, there is DMPonline https://dmponline.dcc.ac.uk/
York Research Data Management
https://www.york.ac.uk/library/info-for/researchers/data/

Data Management|4th August 2017|18/18

https://dmponline.dcc.ac.uk/
https://www.york.ac.uk/library/info-for/researchers/data/

